Araştırma Makalesi
BibTex RIS Kaynak Göster

Çeşitli Bakır Konsantrasyonları altında Atıksuda Büyütülen Borodinellopsis texensis’in Biyoetanol ve Antioksidan Potansiyelinin Araştırılması

Yıl 2025, Cilt: 29 Sayı: 1, 114 - 123, 25.04.2025
https://doi.org/10.19113/sdufenbed.1548817

Öz

Mikroalgler hızlı büyüyebilme özellikleri ile diğer canlıların önüne geçerek bilimsel çalışmalarda sıklıkla kullanılabilirler. Onlar atıksu içerisinde büyütülerek atıksuyunda arıtımına katkı sağlayabilirler. Ayrıca, mikroalgler içerisindeki metabolik bileşikler sayesinde sanayide kullanılabilir. Bu çalışmada biz %25 atıksu içerisinde büyütülen Borodinellopsis texensis'in çeşitli konsantrasyonlardaki bakır stresine karşı biyokütle, karbonhidrat, biyoetanol ve antioksidan aktivitelerine göstermiş olduğu değişimi inceledik. Maksimum biyokütle konsatrasyonu 0,79 ± 0,02 g/L ile kontrol grubunda bulundu. Buna ek olarak, en yüksek karbonhidrat içeriği 0,025 g/L bakır konsantrasyonunda 0,29 ± 0,02 g/L olduğu gözlemlendi. Borodinellopsis texensis’in biyoetanol verimi 0,025 g/L Cu konsatrasyonunda 174.4 mg/g iken, kontolün biyoetanol verimi 141,8 mg/g olarak bulundu. Borodinellopsis texensis'in antioksidan aktivitelerini incelemek için DPPH, CAT, SOD ve APX testleri yapıldı. Borodinellopsis texensis'in maksimum DPPH yakalama aktivitesi %83, CAT aktivitesi 17,4 µmol/mg, SOD aktivitesi 8,87 µmol/mg ve APX aktiviteside 32,7 µmol/mg olarak 0,025 g/L Cu konsantrasyonunda bulundu. Bu çalışmanın yardımıyla gelecekte mikroalglerin daha büyük reaktörlerde bakır stresine maruz kaldığında nasıl tepki verdiği konusundaki araştırmalarımıza devam edeceğiz.

Kaynakça

  • [1] Thakur, A., Sharma, D., Saini, R., Suhag, R., Thakur, D., 2024. Cultivating blue food proteins: Innovating next-generation ingredients from macro and microalgae. Biocatalysis and Agricultural Biotechnology, 60, 103278.
  • [2] Condor, B.E., de Luna, M.D.G., Lacson, C.F.Z., Acebu, P.I.G., Abarca, R.R.M., Nagarajan, D., Lee, D.J., Chang, J.S., 2024. Effects of carbon dioxide concentration and swine wastewater on the cultivation of Chlorella vulgaris FSP-E and bioethanol production from microalgae biomass. Applied Energy, 369, 123617.
  • [3] Onay, M., 2021. Enhancing phycoerythrin and phycocyanin production from porphyridium cruentum CCALA 415 in synthetic wastewater: The application of theoretical methods on microalgae. Süleyman Demirel University Journal of Natural and Applied Sciences, 25, 499–512.
  • [4] Acebu, P.I.G., de Luna, M.D.G., Chen, C.Y., Abarca, R.R.M., Chen, J.H., Chang, J.S., 2022. Bioethanol production from Chlorella vulgaris ESP-31 grown in unsterilized swine wastewater. Bioresource Technology, 352, 127086.
  • [5] Zhu, J., Wakisaka, M., Omura, T., Yang, Z., Yin, Y., Fang, W., 2024. Advances in industrial harvesting techniques for edible microalgae: Recent insights into sustainable, efficient methods and future directions. Journal of Cleaner Production, 436, 140626.
  • [6] Fernandes, A.S., Caetano, P.A., Jacob-Lopes, E., Zepka, L.Q., de Rosso, V.V., 2024. Alternative green solvents associated with ultrasound-assisted extraction: A green chemistry approach for the extraction of carotenoids and chlorophylls from microalgae. Food Chemistry, 455, 139939.
  • [7] Nunes, E., Odenthal, K., Nunes, N., Fernandes, T., Fernandes, I.A., Pinheiro de Carvalho, M.A.A., 2024. Protein extracts from microalgae and cyanobacteria biomass. Techno-functional properties and bioactivity: A review. Algal Research, 82, 103638.
  • [8] Bora, A., Thondi Rajan, A.S., Ponnuchamy, K., Muthusamy, G., Alagarsamy, A., 2024. Microalgae to bioenergy production: Recent advances, influencing parameters, utilization of wastewater – A critical review. Science of The Total Environment, 946, 174230.
  • [9] de Morais, E.G., Sampaio, I.C.F., Gonzalez-Flo, E., Ferrer, I., Uggetti, E., García, J., 2023. Microalgae harvesting for wastewater treatment and resources recovery: A review. New Biotechnology, 78, 84–94.
  • [10] Abdullah, M., Ali, Z., Talha, M., Amanat, K., Sarwar, F., Khan, J., Ahmad, K., 2024. Advancements in sustainable production of biofuel by microalgae : Recent insights and future directions. Environmental Research, 262, 119902.
  • [11] Alavianghavanini, A., Shayesteh, H., Bahri, P.A., Vadiveloo, A., Moheimani, N.R., 2024. Microalgae cultivation for treating agricultural effluent and producing value-added products. Science of The Total Environment, 912, 169369.
  • [12] Danouche, M., El Ghachtouli, N., El Baouchi, A., El Arroussi, H., 2020. Heavy metals phycoremediation using tolerant green microalgae: Enzymatic and non-enzymatic antioxidant systems for the management of oxidative stress. Journal of Environmental Chemical Engineering, 8, 104460.
  • [13] Onay, M., Aladag, E., 2023. Production and use of Scenedesmus acuminatus biomass in synthetic municipal wastewater for integrated biorefineries. Environmental Science and Pollution Research, 30, 15808–15820.
  • [14] Chen, L., DeGroot, C.T., Bassi, A., 2024. Biofilm growth enhancement in microalgae biofilm reactors: Parameters, configurations, and modeling. J. Water Process Eng. 65, 105780.
  • [15] Pereira, A.S.A. de P., Silva, T.A. da, Magalhães, I.B., Ferreira, J., Braga, M.Q., Lorentz, J.F., Assemany, P.P., Couto, E. de A. do, Calijuri, M.L., 2024. Biocompounds from wastewater-grown microalgae: a review of emerging cultivation and harvesting technologies. Science of The Total Environment, 920, 170918.
  • [16] Onay, M., 2020. Biomass and Bio-butanol Production from Borodinellopsis texensis CCALA 892 in Synthetic Wastewater: Determination of Biochemical Composition. Süleyman Demirel University Journal of Natural and Applied Sciences, 24, 306–316.
  • [17] Onay, M., Ayas, Z.S., 2024. Coproduction of Biofuel and Pigments from Micractinium sp. Using UV-Induced Mutagenesis and Adding Abscisic Acid and Salicylic Acid for Biorefinery Concepts. Arabian Journal for Science and Engineering, 49, 7929–7944.
  • [18] Rizza, S. L., Sanz Smachetti, M. E., Do Nascimento, M., Salerno, G.L., Curatti, L., 2017. Bioprospecting for native microalgae as an alternative source of sugars for the production of bioethanol. Algal Research, 22, 140–147.
  • [19] Yousefi, Y., Hanachi, P., Samadi, M., Khoshnamvand, M., 2023. Heavy metals (copper and iron) and nutrients (nitrate and phosphate) removal from aqueous medium by microalgae Chlorella vulgaris and Scendesmus obliquus, and their biofilms. Marine Environmental Research, 188, 105989.
  • [20] Wong, K.C., Goh, P.S., Suzaimi, N.D., Ahmad, N.A., Lim, J.W., Ismail, A.F., 2023. Copper-catalyzed FeOOH templated method for accelerated fabrication of ultraporous membranes used in microalgae dewatering. Chemical Engineering Journal, 453, 139827.
  • [21] Liu, L., Lin, X., Luo, L., Yang, J., Luo, J., Liao, X., Cheng, H., 2021. Biosorption of copper ions through microalgae from piggery digestate: Optimization, kinetic, isotherm and mechanism. Journal of Cleaner Production, 319, 128724.
  • [22] Pascual, G., Sano, D., Sakamaki, T., Akiba, M., Nishimura, O., 2022. The water temperature changes the effect of pH on copper toxicity to the green microalgae Raphidocelis subcapitata. Chemosphere, 291, 133110.
  • [23] Zhu, X., Zhao, W., Chen, X., Zhao, T., Tan, L., Wang, J., 2020. Growth inhibition of the microalgae Skeletonema costatum under copper nanoparticles with microplastic exposure. Marine Environmental Research, 158, 105005.
  • [24] Manikandan, D.B., Arumugam, M., Sridhar, A., Perumalsamy, B., Ramasamy, T., 2023. Sustainable fabrication of hybrid silver-copper nanocomposites (Ag‐CuO NCs) using Ocimum americanum L. as an effective regime against antibacterial, anticancer, photocatalytic dye degradation and microalgae toxicity. Environmental Research, 228, 115867.
  • [25] Li, S., Yu, Y., Gao, X., Yin, Z., Bao, J., Li, Z., Chu, R., Hu, D., Zhang, J., Zhu, L., 2021. Evaluation of growth and biochemical responses of freshwater microalgae Chlorella vulgaris due to exposure and uptake of sulfonamides and copper. Bioresource Technology, 342, 126064.
  • [26] Li, S., Chu, R., Hu, D., Yin, Z., Mo, F., Hu, T., Liu, C., Zhu, L., 2020. Combined effects of 17β-estradiol and copper on growth, biochemical characteristics and pollutant removals of freshwater microalgae Scenedesmus dimorphus. Science of The Total Environment, 730, 138597.
  • [27] Davarpanah, E., Guilhermino, L., 2015. Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuii. Estuarine, Coastal and Shelf Science, 167, 269–275.
  • [28] Saavedra, R., Muñoz, R., Taboada, M.E., Vega, M., Bolado, S., 2018. Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae. Bioresource Technology, 263, 49–57.
  • [29] Rosyidah, A., Purbani, D.C., Pratiwi, R.D., Muttaqien, S.E., Nantapong, N., Warsito, M.F., Fikri, M.N., Ruth, F., Gustini, N., Syahputra, G., Padri, M., Noerdjito, D.R., Nurkanto, A., Afani, H., 2024. Eco-friendly synthesis of gold nanoparticles by marine microalgae Synechococcus moorigangae: Characterization, antimicrobial, and antioxidant properties. Kuwait Journal of Science, 51, 100194.
  • [30] Hamed, S.M., Selim, S., Klöck, G., AbdElgawad, H., 2017. Sensitivity of two green microalgae to copper stress: Growth, oxidative and antioxidants analyses. Ecotoxicology and Environmental Safety, 144, 19–25.
  • [31] Lozano, P., Trombini, C., Crespo, E., Blasco, J., Moreno-Garrido, I., 2014. ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine). Ecotoxicology and Environmental Safety, 104, 294–301.
  • [32] Liu, X.Y., Hong, Y., Liang, M., Zhai, Q.Y., 2023. Bioremediation of zinc and manganese in swine wastewater by living microalgae: Performance, mechanism, and algal biomass utilization. Bioresource Technology, 385, 129382.
  • [33] Fu, D., Zhang, Q., Fan, Z., Qi, H., Wang, Z., Peng, L., 2019. Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris. Aquatic Toxicology, 216, 105319.
  • [34] Wang, H., Wang, C., Ge, B., Zhang, X., Zhou, C., Yan, X., Ruan, R., Cheng, P., 2023. Effect of heavy metals in aquaculture water on the growth of microalgae and their migration mechanism in algae-shellfish system. Chemical Engineering Journal, 473, 145274.
  • [35] Zhang, L., Wang, J., Shao, R., Chuai, X., Wang, S., Yue, Z., 2024. Detoxification and removal of heavy metal by an acid-tolerant microalgae, Graesiella sp. MA1. Journal of Water Process Engineering, 64, 105579.
  • [36] Odenthal, K., Nunes, E., Nunes, N., Fernandes, T., Fernandes, I.A., Pinheiro de Carvalho, M.A.A., 2024. Microalgae and cyanobacteria as natural sources of antioxidant enzymes and enzyme inhibitors for Alzheimer’s and diabetes. Algal Research, 82. 103610.
  • [37] Kara, A., Demirbel, E., 2012. Kinetic, Isotherm and Thermodynamic Analysis on Adsorption of Cr(VI) Ions from Aqueous Solutions by Synthesis and Characterization of Magnetic-Poly(divinylbenzene-vinylimidazole) Microbeads. Water, Air, & Soil Pollution, 223, 2387–2403.
  • [38] Özer, E. T., Osman, B., Kara, A., Demirbel, E., Beşirli, N., & Güçer, Ş., 2015. Diethyl phthalate removal from aqueous phase using poly(EGDMA-MATrp) beads: kinetic, isothermal and thermodynamic studies. Environmental Technology, 36(13), 1698–1706.
  • [39] Göçenoğlu Sarıkaya, A., Osman, B., Kara, A., Pazarlioglu, N., and Beşirli, N., 2016. Adsorption of cinnabarinic acid from culture fluid with magnetic microbeads. Biomedical Chromatography, 30, 88–96.
  • [40] Osman, B., Kara, A., Demirbel, E. et al., 2012. Adsorption Equilibrium, Kinetics and Thermodynamics of α-Amylase on Poly(DVB-VIM)-Cu+2 Magnetic Metal-Chelate Affinity Sorbent. Applied Biochemistry and Biotechnology, 168, 279–294.
  • [41] Mutlu, G.K., Kara, A., Tekin, N. et al., 2024. Synthesis and characterization of 1-vinyl-1,2,4-triazole, m-poly(EGDMA-VTA)-TiO2 polymer composite particles and the using of Reactive Orange 16 dye in adsorption and photocatalytic decolorization. Colloid and Polymer Science, 302, 623–642.

Investigation of The Bioethanol and Antioxidant Potential of Borodinellopsis texensis Grown in Wastewater under Various Copper Concentrations

Yıl 2025, Cilt: 29 Sayı: 1, 114 - 123, 25.04.2025
https://doi.org/10.19113/sdufenbed.1548817

Öz

Microalgae have the potential to grow at a rapid rate, which allows them to surpass other living creatures in terms of their prevalence in scientific research settings. Through their growth in wastewater, they are able to make a contribution to the treatment of wastewater. In addition, microalgae's metabolic components make them suitable for industrial applications. In this work, we investigated at how copper stress at various concentrations affected the biomass, carbohydrate, bioethanol, and antioxidant activities of Borodinellopsis texensis cultivated in 25% wastewater. The maximum biomass concentration was 0.79 ± 0.02 g/L at control group. In addition, carbohydrate content was the highest in a medium with 0.025 g/L copper, at 0.29 ± 0.02 g/L. The bioethanol productivities of Borodinellopsis texensis were 174.4 mg/g for 0.025 g/L Cu and 141.8 mg/ g for the control. DPPH, CAT, SOD and APX tests were performed to examine the antioxidant activities of Borodinellopsis texensis. The DPPH maximum scavenging, CAT, SOD, and APX activities of Borodinellopsis texensis were 83%, 17.4 µmol/mg, 8.87 µmol/mg, and 32.7 µmol/mg at 0.025 g/L of Cu, respectively. We are going to continue our investigation into the ways in which microalgae react when it is subjected to copper stress in larger reactors in the future with the assistance of this study.

Kaynakça

  • [1] Thakur, A., Sharma, D., Saini, R., Suhag, R., Thakur, D., 2024. Cultivating blue food proteins: Innovating next-generation ingredients from macro and microalgae. Biocatalysis and Agricultural Biotechnology, 60, 103278.
  • [2] Condor, B.E., de Luna, M.D.G., Lacson, C.F.Z., Acebu, P.I.G., Abarca, R.R.M., Nagarajan, D., Lee, D.J., Chang, J.S., 2024. Effects of carbon dioxide concentration and swine wastewater on the cultivation of Chlorella vulgaris FSP-E and bioethanol production from microalgae biomass. Applied Energy, 369, 123617.
  • [3] Onay, M., 2021. Enhancing phycoerythrin and phycocyanin production from porphyridium cruentum CCALA 415 in synthetic wastewater: The application of theoretical methods on microalgae. Süleyman Demirel University Journal of Natural and Applied Sciences, 25, 499–512.
  • [4] Acebu, P.I.G., de Luna, M.D.G., Chen, C.Y., Abarca, R.R.M., Chen, J.H., Chang, J.S., 2022. Bioethanol production from Chlorella vulgaris ESP-31 grown in unsterilized swine wastewater. Bioresource Technology, 352, 127086.
  • [5] Zhu, J., Wakisaka, M., Omura, T., Yang, Z., Yin, Y., Fang, W., 2024. Advances in industrial harvesting techniques for edible microalgae: Recent insights into sustainable, efficient methods and future directions. Journal of Cleaner Production, 436, 140626.
  • [6] Fernandes, A.S., Caetano, P.A., Jacob-Lopes, E., Zepka, L.Q., de Rosso, V.V., 2024. Alternative green solvents associated with ultrasound-assisted extraction: A green chemistry approach for the extraction of carotenoids and chlorophylls from microalgae. Food Chemistry, 455, 139939.
  • [7] Nunes, E., Odenthal, K., Nunes, N., Fernandes, T., Fernandes, I.A., Pinheiro de Carvalho, M.A.A., 2024. Protein extracts from microalgae and cyanobacteria biomass. Techno-functional properties and bioactivity: A review. Algal Research, 82, 103638.
  • [8] Bora, A., Thondi Rajan, A.S., Ponnuchamy, K., Muthusamy, G., Alagarsamy, A., 2024. Microalgae to bioenergy production: Recent advances, influencing parameters, utilization of wastewater – A critical review. Science of The Total Environment, 946, 174230.
  • [9] de Morais, E.G., Sampaio, I.C.F., Gonzalez-Flo, E., Ferrer, I., Uggetti, E., García, J., 2023. Microalgae harvesting for wastewater treatment and resources recovery: A review. New Biotechnology, 78, 84–94.
  • [10] Abdullah, M., Ali, Z., Talha, M., Amanat, K., Sarwar, F., Khan, J., Ahmad, K., 2024. Advancements in sustainable production of biofuel by microalgae : Recent insights and future directions. Environmental Research, 262, 119902.
  • [11] Alavianghavanini, A., Shayesteh, H., Bahri, P.A., Vadiveloo, A., Moheimani, N.R., 2024. Microalgae cultivation for treating agricultural effluent and producing value-added products. Science of The Total Environment, 912, 169369.
  • [12] Danouche, M., El Ghachtouli, N., El Baouchi, A., El Arroussi, H., 2020. Heavy metals phycoremediation using tolerant green microalgae: Enzymatic and non-enzymatic antioxidant systems for the management of oxidative stress. Journal of Environmental Chemical Engineering, 8, 104460.
  • [13] Onay, M., Aladag, E., 2023. Production and use of Scenedesmus acuminatus biomass in synthetic municipal wastewater for integrated biorefineries. Environmental Science and Pollution Research, 30, 15808–15820.
  • [14] Chen, L., DeGroot, C.T., Bassi, A., 2024. Biofilm growth enhancement in microalgae biofilm reactors: Parameters, configurations, and modeling. J. Water Process Eng. 65, 105780.
  • [15] Pereira, A.S.A. de P., Silva, T.A. da, Magalhães, I.B., Ferreira, J., Braga, M.Q., Lorentz, J.F., Assemany, P.P., Couto, E. de A. do, Calijuri, M.L., 2024. Biocompounds from wastewater-grown microalgae: a review of emerging cultivation and harvesting technologies. Science of The Total Environment, 920, 170918.
  • [16] Onay, M., 2020. Biomass and Bio-butanol Production from Borodinellopsis texensis CCALA 892 in Synthetic Wastewater: Determination of Biochemical Composition. Süleyman Demirel University Journal of Natural and Applied Sciences, 24, 306–316.
  • [17] Onay, M., Ayas, Z.S., 2024. Coproduction of Biofuel and Pigments from Micractinium sp. Using UV-Induced Mutagenesis and Adding Abscisic Acid and Salicylic Acid for Biorefinery Concepts. Arabian Journal for Science and Engineering, 49, 7929–7944.
  • [18] Rizza, S. L., Sanz Smachetti, M. E., Do Nascimento, M., Salerno, G.L., Curatti, L., 2017. Bioprospecting for native microalgae as an alternative source of sugars for the production of bioethanol. Algal Research, 22, 140–147.
  • [19] Yousefi, Y., Hanachi, P., Samadi, M., Khoshnamvand, M., 2023. Heavy metals (copper and iron) and nutrients (nitrate and phosphate) removal from aqueous medium by microalgae Chlorella vulgaris and Scendesmus obliquus, and their biofilms. Marine Environmental Research, 188, 105989.
  • [20] Wong, K.C., Goh, P.S., Suzaimi, N.D., Ahmad, N.A., Lim, J.W., Ismail, A.F., 2023. Copper-catalyzed FeOOH templated method for accelerated fabrication of ultraporous membranes used in microalgae dewatering. Chemical Engineering Journal, 453, 139827.
  • [21] Liu, L., Lin, X., Luo, L., Yang, J., Luo, J., Liao, X., Cheng, H., 2021. Biosorption of copper ions through microalgae from piggery digestate: Optimization, kinetic, isotherm and mechanism. Journal of Cleaner Production, 319, 128724.
  • [22] Pascual, G., Sano, D., Sakamaki, T., Akiba, M., Nishimura, O., 2022. The water temperature changes the effect of pH on copper toxicity to the green microalgae Raphidocelis subcapitata. Chemosphere, 291, 133110.
  • [23] Zhu, X., Zhao, W., Chen, X., Zhao, T., Tan, L., Wang, J., 2020. Growth inhibition of the microalgae Skeletonema costatum under copper nanoparticles with microplastic exposure. Marine Environmental Research, 158, 105005.
  • [24] Manikandan, D.B., Arumugam, M., Sridhar, A., Perumalsamy, B., Ramasamy, T., 2023. Sustainable fabrication of hybrid silver-copper nanocomposites (Ag‐CuO NCs) using Ocimum americanum L. as an effective regime against antibacterial, anticancer, photocatalytic dye degradation and microalgae toxicity. Environmental Research, 228, 115867.
  • [25] Li, S., Yu, Y., Gao, X., Yin, Z., Bao, J., Li, Z., Chu, R., Hu, D., Zhang, J., Zhu, L., 2021. Evaluation of growth and biochemical responses of freshwater microalgae Chlorella vulgaris due to exposure and uptake of sulfonamides and copper. Bioresource Technology, 342, 126064.
  • [26] Li, S., Chu, R., Hu, D., Yin, Z., Mo, F., Hu, T., Liu, C., Zhu, L., 2020. Combined effects of 17β-estradiol and copper on growth, biochemical characteristics and pollutant removals of freshwater microalgae Scenedesmus dimorphus. Science of The Total Environment, 730, 138597.
  • [27] Davarpanah, E., Guilhermino, L., 2015. Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuii. Estuarine, Coastal and Shelf Science, 167, 269–275.
  • [28] Saavedra, R., Muñoz, R., Taboada, M.E., Vega, M., Bolado, S., 2018. Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae. Bioresource Technology, 263, 49–57.
  • [29] Rosyidah, A., Purbani, D.C., Pratiwi, R.D., Muttaqien, S.E., Nantapong, N., Warsito, M.F., Fikri, M.N., Ruth, F., Gustini, N., Syahputra, G., Padri, M., Noerdjito, D.R., Nurkanto, A., Afani, H., 2024. Eco-friendly synthesis of gold nanoparticles by marine microalgae Synechococcus moorigangae: Characterization, antimicrobial, and antioxidant properties. Kuwait Journal of Science, 51, 100194.
  • [30] Hamed, S.M., Selim, S., Klöck, G., AbdElgawad, H., 2017. Sensitivity of two green microalgae to copper stress: Growth, oxidative and antioxidants analyses. Ecotoxicology and Environmental Safety, 144, 19–25.
  • [31] Lozano, P., Trombini, C., Crespo, E., Blasco, J., Moreno-Garrido, I., 2014. ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine). Ecotoxicology and Environmental Safety, 104, 294–301.
  • [32] Liu, X.Y., Hong, Y., Liang, M., Zhai, Q.Y., 2023. Bioremediation of zinc and manganese in swine wastewater by living microalgae: Performance, mechanism, and algal biomass utilization. Bioresource Technology, 385, 129382.
  • [33] Fu, D., Zhang, Q., Fan, Z., Qi, H., Wang, Z., Peng, L., 2019. Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris. Aquatic Toxicology, 216, 105319.
  • [34] Wang, H., Wang, C., Ge, B., Zhang, X., Zhou, C., Yan, X., Ruan, R., Cheng, P., 2023. Effect of heavy metals in aquaculture water on the growth of microalgae and their migration mechanism in algae-shellfish system. Chemical Engineering Journal, 473, 145274.
  • [35] Zhang, L., Wang, J., Shao, R., Chuai, X., Wang, S., Yue, Z., 2024. Detoxification and removal of heavy metal by an acid-tolerant microalgae, Graesiella sp. MA1. Journal of Water Process Engineering, 64, 105579.
  • [36] Odenthal, K., Nunes, E., Nunes, N., Fernandes, T., Fernandes, I.A., Pinheiro de Carvalho, M.A.A., 2024. Microalgae and cyanobacteria as natural sources of antioxidant enzymes and enzyme inhibitors for Alzheimer’s and diabetes. Algal Research, 82. 103610.
  • [37] Kara, A., Demirbel, E., 2012. Kinetic, Isotherm and Thermodynamic Analysis on Adsorption of Cr(VI) Ions from Aqueous Solutions by Synthesis and Characterization of Magnetic-Poly(divinylbenzene-vinylimidazole) Microbeads. Water, Air, & Soil Pollution, 223, 2387–2403.
  • [38] Özer, E. T., Osman, B., Kara, A., Demirbel, E., Beşirli, N., & Güçer, Ş., 2015. Diethyl phthalate removal from aqueous phase using poly(EGDMA-MATrp) beads: kinetic, isothermal and thermodynamic studies. Environmental Technology, 36(13), 1698–1706.
  • [39] Göçenoğlu Sarıkaya, A., Osman, B., Kara, A., Pazarlioglu, N., and Beşirli, N., 2016. Adsorption of cinnabarinic acid from culture fluid with magnetic microbeads. Biomedical Chromatography, 30, 88–96.
  • [40] Osman, B., Kara, A., Demirbel, E. et al., 2012. Adsorption Equilibrium, Kinetics and Thermodynamics of α-Amylase on Poly(DVB-VIM)-Cu+2 Magnetic Metal-Chelate Affinity Sorbent. Applied Biochemistry and Biotechnology, 168, 279–294.
  • [41] Mutlu, G.K., Kara, A., Tekin, N. et al., 2024. Synthesis and characterization of 1-vinyl-1,2,4-triazole, m-poly(EGDMA-VTA)-TiO2 polymer composite particles and the using of Reactive Orange 16 dye in adsorption and photocatalytic decolorization. Colloid and Polymer Science, 302, 623–642.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Melih Onay 0000-0002-9378-0856

Yayımlanma Tarihi 25 Nisan 2025
Gönderilme Tarihi 12 Eylül 2024
Kabul Tarihi 12 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 1

Kaynak Göster

APA Onay, M. (2025). Investigation of The Bioethanol and Antioxidant Potential of Borodinellopsis texensis Grown in Wastewater under Various Copper Concentrations. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(1), 114-123. https://doi.org/10.19113/sdufenbed.1548817
AMA Onay M. Investigation of The Bioethanol and Antioxidant Potential of Borodinellopsis texensis Grown in Wastewater under Various Copper Concentrations. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Nisan 2025;29(1):114-123. doi:10.19113/sdufenbed.1548817
Chicago Onay, Melih. “Investigation of The Bioethanol and Antioxidant Potential of Borodinellopsis Texensis Grown in Wastewater under Various Copper Concentrations”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, sy. 1 (Nisan 2025): 114-23. https://doi.org/10.19113/sdufenbed.1548817.
EndNote Onay M (01 Nisan 2025) Investigation of The Bioethanol and Antioxidant Potential of Borodinellopsis texensis Grown in Wastewater under Various Copper Concentrations. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 1 114–123.
IEEE M. Onay, “Investigation of The Bioethanol and Antioxidant Potential of Borodinellopsis texensis Grown in Wastewater under Various Copper Concentrations”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 29, sy. 1, ss. 114–123, 2025, doi: 10.19113/sdufenbed.1548817.
ISNAD Onay, Melih. “Investigation of The Bioethanol and Antioxidant Potential of Borodinellopsis Texensis Grown in Wastewater under Various Copper Concentrations”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/1 (Nisan 2025), 114-123. https://doi.org/10.19113/sdufenbed.1548817.
JAMA Onay M. Investigation of The Bioethanol and Antioxidant Potential of Borodinellopsis texensis Grown in Wastewater under Various Copper Concentrations. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29:114–123.
MLA Onay, Melih. “Investigation of The Bioethanol and Antioxidant Potential of Borodinellopsis Texensis Grown in Wastewater under Various Copper Concentrations”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 29, sy. 1, 2025, ss. 114-23, doi:10.19113/sdufenbed.1548817.
Vancouver Onay M. Investigation of The Bioethanol and Antioxidant Potential of Borodinellopsis texensis Grown in Wastewater under Various Copper Concentrations. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29(1):114-23.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.