Araştırma Makalesi
BibTex RIS Kaynak Göster

Accumulation of Airborne Trace Elements in Transplanted Pseudevernia furfuracea (L.) Zopf Exposed at Urban Monitoring Stations in Yozgat Province, Türkiye

Yıl 2025, Cilt: 29 Sayı: 1, 84 - 95, 25.04.2025
https://doi.org/10.19113/sdufenbed.1567997

Öz

Automated stations for measuring air quality consistently measure levels of airborne pollutants, but their quantity is limited, they need significant maintenance expenses, and they are unable to capture the complete geographical distribution of airborne contaminants. This research involved collecting samples of Pseudevernia furfuracea (L.) Zopf from Yapraklı-Çankırı and transplanting them for two consecutive periods of three months each at 5 exposure locations surrounding the polluted city center of Yozgat (Türkiye). The main objective of our study was to analyze the levels of Cu, Cd, Ni, Pb, Mn and Zn using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), additionally to calculate the concentrations of chlorophyll a and b, as well as the ratios of Chl (a+b), Chl (a/b), and Chl (b/a), lastly to create a pollution map of the city. The analytical findings for P. furfuracea indicate the following mean concentrations of heavy metals in 1st period Cu-0.30μg g−1, Cd-0,026μg g−1, Ni-0,61μg g−1, Pb-0,54μg g−1, Mn-2,17μg g−1, Zn-0,20μg g−1; in 2nd period Cu-0,43μg g−1, Cd-0,027μg g−1, Ni-0,64μg g−1, Pb-0,66μg g−1, Mn-2,21μg g−1, Zn-0,49μg g−1. While means of control stations are in 1st period Cu-0,26μg g−1, Cd-0,028μg g−1, Ni-0,23μg g−1, Pb-0,52μg g−1, Mn-1,90μg g−1, Zn-0,16μg g−1; in 2nd period Cu-0,36μg g−1, Cd-0,027μg g−1, Ni-0,29μg g−1, Pb-0,56μg g−1, Mn-1,96μg g−1, Zn-0,58μg g−1 in 2nd period. The variables that raise heavy metal levels include: high traffic volume, industrial operations and urban heating activities. Although the study was brief, it demonstrated that P. furfuracea is an effective bioaccumulator and bioindicator organism for future biomonitoring studies.

Kaynakça

  • [1] Khamweera, P., Chaloyard, N., Klaysood, A., Soottitantawat, S., Polyiam, W., Phokaeoc, S., Sutthisangiam, N., Visutsak, P. 2024. “Exploitation of an ontology in a semantic web: A case study transferring Thai lichen data into domain ontologies”, Management & Policy Issues, 16 (1): 39-46.
  • [2] Bubach, D.F., Catan, S.P., Arribere, M.A., Dieguez, M.C., Garcia, P.E., Messuti, M.I. 2024. “Mercury content and elemental composition of fruticose lichens from Nahuel Huapi National park (Patagonia, Argentina): Time trends in transplanted and in situ grown thalli”, Atmospheric Pollution Research. 15 (2): 101988.
  • [3] Saleh, S.S.N.A., Abas, A. 2023. “Monitoring Heavy Metal Concentrations Using Transplanted Lichen in a Tourism City of Malaysia”, Sustainability, 15(7): 5885
  • [4] Vannini, A., Pagano, L., Bartoli, M., Fedeli, R., Malcevschi, A., Sidoli, M., Magnani, G., Pontiroli, D., Riccò, M., Marmiroli, M., Petraglia, A., Loppi, S. 2024. “Accumulation and release of cadmium ions in the Lichen Evernia prunastri (L.) Ach. and wood-derived biochar: implication for the use of biochar for environmental biomonitoring”, Toxics, 12(1):66.
  • [5] Hernández, J.M., de la Fournière, E.M., Ramos, C.P. Debray, M.E., Plá, R.R., Jasan, R.C., Invernizzi, R., Brizuela, L.G.R., Cañas,M.S. 2024. “Contribution of Mine-Derived Airborne Particulate Matter to Ca, Fe, Mn and S Content and Distribution in the Lichen Punctelia hypoleucites Transplanted to Bajo de la Alumbrera Mine, Catamarca (Argentina)”, Arch Environ Contam Toxicol, 86(2):140-151.
  • [6] Kumari, K., Kumar, V., Nayaka, S., Saxena, G., Sanyal, I. 2024. “Physiological alterations and heavy metal accumulation in the transplanted lichen Pyxine cocoes (Sw.) Nyl. in Lucknow city, Uttar Pradesh”, Environ Monit Assess , 196(1):84.
  • [7] Lawal, O., Ochei, L.C. 2024. “Lichen - air quality association rule mining for urban environments in the tropics”, Int J Environ Health Res, 34(3):1713-1724.
  • [8] Adžemović, S., Aliefendić, S., Mehić, E., Ranica, A., Vehab, I., Alagić, N., Delibašić, S., Herceg, K., Karić, M., Hadžić, B., Gojak‑Salimović, S., Ljubijankić, N.,Džepina, K., Ramić, E., Huremović, J. 2023. “Estimation of atmospheric deposition utilizing lichen Hypogymnia physodes, moss Hypnum cupressiforme and soil in Bosnia and Herzegovina”, Int. J. Environ. Sci. Technol, 20: 1905–1918.
  • [9] Lucadamo, L., Anna, C., Gallo, L. 2017. “Local wind monitoring matched with lichen Pseudevernia furfuracea (L.) Zopf transplantation technique to assess the environmental impact of a biomass power plant," Turkish Journal of Botany, 41 (2): 4.
  • [10] Tretiach, M., Adamo, P., Bargagli, R., Baruffo, L., Carletti, L., Crisafulli, P., Giordano, S., Modenesi, P., Orlando, S., Pittao, E. 2007. “Lichen and moss bags as monitoring devices in urban areas. Part I: influence of exposure on sample vitality”, Environ Pollut, 146: 380–391.
  • [11] Tretiach, M., Candotto, Carniel. F., Loppi, S., Carniel, A., Bortolussi, A., Mazzilis, D., Del Bianco, C. 2011. “Lichen transplants as a suitable tool to identify mercury pollution from waste incinerators: a case study from NE Italy”, Environ Monit Assess, 175 (1-4):589-600.
  • [12] Kodnik, D., Winkler, A., Candotto, Carniel F., Tretiach, M. 2017. “Biomagnetic monitoring and element content of lichen transplants in a mixed land use area of NE Italy”, Sci Total Environ, 1;595:858-867.
  • [13] Takano, A.P.C., Rybak, J., Veras, M.M. 2024. “Bioindicators and human biomarkers as alternative approaches for cost-effective assessment of air pollution exposure”, Front. Environ. Eng, 3:1346863.
  • [14] Budzyńska-Lipka, W. 2022. Świsłowskiand, P., Rajfur, M., “Biological monitoring using lichens as a source of information about contamination of mountain with heavy metals”, Ecol Chem Eng S, 29(2):155-168.
  • [15] Garty, J. 2000. Trace Metals in the Environment, 4th ed, 245-276, Rijeka.
  • [16] Capozzi, F., Giordano, S., Di Palma A., Spagnuolo, V., De Nicola, F., Adamo, P. 2016. “Biomonitoring of atmospheric pollution by moss bags: Discriminating urban-rural structure in a fragmented landscape”, Chemosphere, 149: 211-8.
  • [17] Mlakar, L.T., Horvat, M., Kotnik, J., Jeran, Z., Vuk, T., Mrak, T.,Fajon, V. 2010. “Biomonitoring with epiphytic lichens as a complementary method for the study of mercury contamination near a cement plant”, Environmental Monitoring and Assessment, 181(1–4): 225–241.
  • [18] Cloquet, C., Muynck, D.D., Signoret, J.,Vanhaecke, F. 2009. “Urban/periurban aerosol survey by determination of the concentration and isotopic composition of Pb collected by transplanted lichen Hypogymnia physodes”, Environ. Sci. Technol, 43: 623-629.
  • [19] Tarawneh, A. H.2021. “Assessment of Lichens as Biomonitors of Heavy Metal Pollution in Selected Mining Area, Slovakia”, Pakistan Journal of Analytical & Environmental Chemistry, 22(1): 53–59.
  • [20] Abecasis, L., Gamelas, C. A., Justino, A. R., Dionísio, I., Canha, N., Kertesz, Z., Almeida, S. M. 2022. “Spatial Distribution of Air Pollution, Hotspots and Sources in an Urban-Industrial Area in the Lisbon Metropolitan Area, Portugal-A Biomonitoring Approach”, International Journal of Environmental Research and Public Health, 19(3): 1364.
  • [21] Trzyna, A., Rybak, J., Górka, M., Olszowski, T., Kamińska, J. A., Węsierski, T., Majder-Łopatka, M. 2023. “Comparison of active and passive methods for atmospheric particulate matter collection: From case study to a useful biomonitoring tool”, Chemosphere, 334: 139004.
  • [22] Lucadamo, L., Gallo, L., Corapi, A. 2022. “Detection of air quality improvement within a suburban district (southern Italy) by means of lichen biomonitoring”, Atmospheric Pollution Research, 13: 101346.
  • [23] Grifoni, L., Winkler, A., Di Lella, L.A., Buemi, L.P., Sgamellotti, A., Spagnuolo, L., Loppi, S. 2024. “Magnetic and chemical biomonitoring of particulate matter at cultural heritage sites: The Peggy Guggenheim Collection case study (Venice, Italy)”, Environmental Advances, 15: 100455.
  • [24] Boonpeng, C., Sangiamdee, D., Noikrad, S., Boonpragob, K. 2023. “Assessing Seasonal Concentrations of Airborne Potentially Toxic Elements in Tropical Mountain Areas in Thailand Using the Transplanted Lichen Parmotrema Tinctorum (Despr. ex Nyl.) Hale”, Forests, 14(3): 611.
  • [25] Loppi, S., Ravera, S., Paoli, L., “Coping with uncertainty in the assessment of atmospheric pollution with lichen transplants”, Environmental Forensics, 20(3): 228-233.
  • [26] Godinho, R.M., Freitas, M.C., Wolterbeek, H.T. 2019. “Assessment of Lichen Vitality During a Transplantation Experiment to a Polluted Site”, J.Atmos.Chem, 49: 355–361, (2004).
  • [27] Carreras, H.A., Pignata, M.L. 2002. “Biomonitoring of heavy metals and air quality in Cordoba City, Argentina, using transplanted lichens”, Environ Pollut, 117(1): 77-87.
  • [28] Suchara, I., Sucharová, J., Holá, M. 2015. “A quarter century of biomonitoring atmospheric pollution in the Czech Republic”, Environmental Science and Pollution Research, 24(13): 11949–11963.
  • [29] Abas, A., Aiyub, K., Awang, A. 2022. “Biomonitoring potentially toxic elements (PTEs) using lichen transplant Usnea misaminensis: A Case Study from Malaysia”, Sustainability, 14(12): 7254.
  • [30] Incerti, G., Cecconi, E., Capozzi, F., Adamo, P., Bargagli, R., Benesperi, R., Carniel, F.C., Cristofolini, F., Giordano, S., Puntillo, D., Spagnuolo, V., Tretiach , M. 2017. “Infraspecific variability in baseline element composition of the epiphytic lichen Pseudevernia furfuracea in remote areas: implications for biomonitoring of air pollution”, Environ Sci Pollut Res Int, 24(9): 8004-8016.
  • [31] Paola, M., Paolo, G., Paolo, M., Luisa, A.M., Magi, E., Francesco, S. 2014. “Bioaccumulation capacity of two chemical varieties of the lichen Pseudevernia furfuracea”, Ecological indicators, 45: 605-610.
  • [32] Brodo, I.M. 1961. “Transplant experiments with corticolous lichens using a new technique”. Ecology 42(4): 838-841. [33] YEOR. 2019. “Yozgat Union of Chambers and Commodity Exchanges”, Yozgat Economic Outlook Report.
  • [34] http://www.yozgat.gov.tr/sanayi-ticaret-verileri. Access date : 25/07/2024.
  • [35] ESR. 2022. “Environmental Status Report”, Yozgat Governorate, Provincial Directorate of Environment, Urbanisation, and Climate Change.
  • [36] https://gezilecekyerlertr.com/yozgat-nerede/. Access date: 25/07/2024.
  • [37] Topal, M., Arslan Topal, E. I., Öbek, E., Aslan, A. 2023. “Determination of some trace elements in various lichens as biomonitors of pollution and assessment of pollution status”, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(3): 672-681.
  • [38] Cecconi E, Fortuna L, Peplis M, Tretiach M. 2021. “Element accumulation performance of living and dead lichens in a large-scale transplant application”, Environ Sci Pollut Res Int, 28(13): 16214-16226.
  • [39] Ferah, K. 2019. “Rize, Trabzon ve Artvin İllerindeki Hava Kirliliğinin Cladonia rangiformis ve Pseudevernia furfuracea Türleri Kullanılarak Belirlenmesi”, MSc thesis, Recep Tayyip Erdoğan University Institute of Science and Technology, Rize, 32-50.
  • [40] Kodnik, D., Candotto, Carniel F., Licen, S., Tolloi, A., Barbieri, P., Tretiach, M. 2015. “Seasonal variations of PAHs content and distribution patterns in a mixed land use area: a case study in NE Italy with the transplanted lichen Pseudevernia furfuracea”, Atmos. Environ, 113: 255–263.
  • [41] Nascimbene, J., Tretiach, M., Corana, F., Lo, Schiavo F., Kodnik, D., Dainese, M., Mannucci, B. 2014. “Patterns of traffic polycyclic aromatic hydrocarbon pollution in mountain areas can be revealed by lichen biomonitoring: a case study in the dolomites (eastern Italian Alps)”, Sci. Total Environ, 475: 90–96.
  • [42] Tretiach, M., Crisafulli, P., Pittao, E., Rinino, S., Roccotiello, E.,Modenesi, P. 2005. “Isidia ontogeny and its effects on the CO2 gas exchanges of the epiphytic lichen Pseudevernia furfuracea (L.) Zopf”, Lichenologist, 37: 445–462.
  • [43] https://www.dogakolik.com/cankiri/yaprakli-buyuk-yayla/, Access date: 25/07/2024.
  • [44] Barnes, J, D., Balaguer, L., Manrique, E., Elvira, S., Davison, A,W. 1992. “A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants”, Environ Exp Bot, 32: 83–100.
  • [45] Giordano, S., Adamo, P., Spagnuolo ,V., Tretiach, M., Bargagli, R. 2013. “Accumulation of airborne trace elements in mosses, lichens and synthetic materials exposed at urban monitoring stations: towards a harmonisation of the moss-bag technique”, Chemosphere, 90(2): 292-9.
  • [46] Onder, S., Dursun, S. 2006. “Airborne heavy metal pollution of Cedrus libani (A. Rich) in the city centre of Konya (Turkey)”, Atmospheric Environment, 40: 1122-1133.
  • [47] Aksoy, A., Leblebici, Z., Halici, M.G. 2010. Plant Adaptation and Phytoremediation, 1st ed, M. Ashraf, M. Ozturk, M.S.A. Ahmad, 59-71, Türkiye.
  • [48] Işık, V., Vardar, Ç., Aksoy, A., Yıldız, A. 2023. “Biomonitoring of heavy metals by Pseudevernia furfuracea (L.) Zopf in Aksaray city, Turkey”, EQA - International Journal of Environmental Quality, 56(1): 52–61.
  • [49] Allen , S.E. 1989. Chemical Analysis of ecological materials, 2nd ed, Oxford.
  • [50] Finkelman, R. B. 1993. Trace and Minor Elements in Coal, Organic Geochemistry, Chapter 28, pp 593-607. New York
  • [51] Ozkan, A. 2017. “Antakya-Cilvegözü Karayolu Etrafındaki Tarım Arazilerinde ve Bitkilerdeki Ağır Metal Kirliliği”, Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32: 9-18.
  • [52] Agnan, Y., Probst, A. 2017. Sejalon-Delmas, N., “Evaluation of lichen species resistance to atmospheric metal pollution by coupling diversity and bioaccumulation approaches : a new bioindication scale for french forested areas”, Ecological Indicators, 72: 99-110.
  • [53] Gerdol, R., Marchesini, R., lacumin P., Brancaleoni L. 2014. “Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors”, Chemosphere, 108: 388-395.
  • [54] Loppi, S., Frati, L., Paoli, L., Bigagli, V., Rossetti, C., Bruscoli, C., Carsini, A. 2004. “Flavoparmalia coperata thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme (central Italy)”, Sci Total Environ, 326: 113–122.
  • [55] Guidotti, M., Stella, D., Dominici, C., Blasi, G., Owczarek, M., Vitali, M., Protano, C. 2009. “Monitoring of traffic-related pollution in a province of central Italy with transplanted lichen Pseudevernia furfuracea”, Bull Environ Contam Toxicol, 83(6): 852-8.
  • [56] Sorbo, S., Aprile, G., Strumia, S., Castaldo, C. R., Leone, A., Basile. A. 2008 “Trace element accumulation in Pseudevernia furfuracea (L.) Zopf exposed in Italy’s so called Triangle of Death”, Sci Total Environ, 407: 647–654.
  • [57] Sujetovien, G. 2015. Recent Advances in Lichenology, 1st ed, New Delhi, India, 87-119.
  • [58] Hölwarth, M. 1982. “Uberwachung statischer schwerme-tallimmissionen mit Hilfe eines bioindikators stab-Reinhalt luft”, 42: 373-378.
  • [59] Markert, B. 1993. Plants as Biomonitors, Indicators for Heavy Metals in the Terrestrial Environments, 1st ed, Weinheim.
  • [60] Oztetik, E., Cicek, A. 2011. “Effects of urban air pollutants on elemental accumulation and identification of oxidative stress biomarkers in the transplanted lichen Pseudevernia furfuracea”, Environ Toxicol Chem, 30(7): 1629-36.
  • [61] Woolhouse, H, M. 1983. Physiological Plant Ecology III, New York, 245-300.
  • [62] Lu, C, M., Chau, C, W., Zhang, J, H. 2000. “Acute Toxicity of Excess Mercury on The Photosynthetic Performance of Cyanobacterium, S. platensis-Assessment by Chlorophyll Fluorescence Analysis”, Chemosphere, 41:191-196.
  • [63] Wakefield, J, M., Bhattacharjee, J. 2012. “Effect of air Pollution on Chlorophyll Content and Lichen Morphology in Northeastern Louisiana”, The American Bryological and Lichenological Society, 28(4): 104-114.
  • [64] Banerjee, S., Ram, S. S., Mukhopadhyay, A., Jana, N., Sudarshan, M., Chakraborty, A. 2022. Potential of Epiphytic Lichen Pyxine cocoes, as an Indicator of Air Pollution in Kolkata, India. Proceedings of the National Academy of Sciences India Section B Biological Sciences, 93(1), 165–180.
  • [65] Bubach, D. F., Catán, S. P., Arribére, M. A., Diéguez, M. C., García, P. E., Messuti, M. I. 2024. Mercury content and elemental composition of fruticose lichens from Nahuel Huapi National park (Patagonia, Argentina): Time trends in transplanted and in situ grown thalli. Atmospheric Pollution Research, 15(2), 101988.
  • [66] Hernández, J. M., De La Fournière, E. M., Ramos, C. P., Debray, M. E., Plá, R. R., Jasan, R. C., Invernizzi, R., Brizuela, L. G. R., Cañas, M. S. 2024. Contribution of Mine-Derived Airborne Particulate Matter to Ca, Fe, Mn and S Content and Distribution in the Lichen Punctelia hypoleucites Transplanted to Bajo de la Alumbrera Mine, Catamarca (Argentina). Archives of Environmental Contamination and Toxicology, 86(2), 140–151.
  • [67] Kumari, K., Kumar, V., Nayaka, S., Saxena, G., & Sanyal, I. 2024. Physiological alterations and heavy metal accumulation in the transplanted lichen Pyxine cocoes (Sw.) Nyl. in Lucknow city, Uttar Pradesh. Environmental Monitoring and Assessment, 196(1).
  • [68] Boonpeng, C., Sangiamdee, D., Noikrad, S., Boonpragob, K. 2023. Assessing Seasonal Concentrations of Airborne Potentially Toxic Elements in Tropical Mountain Areas in Thailand Using the Transplanted Lichen Parmotrema Tinctorum (Despr. ex Nyl.) Hale. Forests, 14(3), 611.
  • [69] Massimi, L., Castellani, F., Protano, C., Conti, M. E., Antonucci, A., Frezzini, M. A., Galletti, M., Mele, G., Pileri, A., Ristorini, M., Vitali, M., Canepari, S. 2020. Lichen transplants for high spatial resolution biomonitoring of Persistent Organic Pollutants (POPs) in a multi-source polluted area of Central Italy. Ecological Indicators, 120, 106921.
  • [70] Cecconi, E., Fortuna, L., Peplis, M., Tretiach, M. 2020. Element accumulation performance of living and dead lichens in a large-scale transplant application. Environmental Science and Pollution Research, 28(13), 16214–16226.
  • [71] https://www.nufusune.com/yozgat-nufusu, Access date: 20/12/2024.
  • [72] Halici, M.G., Aksoy, A., Demirezen, D.2005. I. Ulusal Erciyes Sempozyumu Bildiriler Kitabı, 23–25 Ekim 2003,Erciyes/Kayseri, pp. 456–461.

Accumulation of Airborne Trace Elements in Transplanted Pseudevernia furfuracea (L.) Zopf Exposed at Urban Monitoring Stations in Yozgat Province, Türkiye

Yıl 2025, Cilt: 29 Sayı: 1, 84 - 95, 25.04.2025
https://doi.org/10.19113/sdufenbed.1567997

Öz

Automated stations for measuring air quality consistently measure levels of airborne pollutants, but their quantity is limited, they need significant maintenance expenses, and they are unable to capture the complete geographical distribution of airborne contaminants. This research involved collecting samples of Pseudevernia furfuracea (L.) Zopf from Yapraklı-Çankırı and transplanting them for two consecutive periods of three months each at 5 exposure locations surrounding the polluted city center of Yozgat (Türkiye). The main objective of our study was to analyze the levels of Cu, Cd, Ni, Pb, Mn and Zn using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), additionally to calculate the concentrations of chlorophyll a and b, as well as the ratios of Chl (a+b), Chl (a/b), and Chl (b/a), lastly to create a pollution map of the city. The analytical findings for P. furfuracea indicate the following mean concentrations of heavy metals in 1st period Cu-0.30μg g−1, Cd-0,026μg g−1, Ni-0,61μg g−1, Pb-0,54μg g−1, Mn-2,17μg g−1, Zn-0,20μg g−1; in 2nd period Cu-0,43μg g−1, Cd-0,027μg g−1, Ni-0,64μg g−1, Pb-0,66μg g−1, Mn-2,21μg g−1, Zn-0,49μg g−1. While means of control stations are in 1st period Cu-0,26μg g−1, Cd-0,028μg g−1, Ni-0,23μg g−1, Pb-0,52μg g−1, Mn-1,90μg g−1, Zn-0,16μg g−1; in 2nd period Cu-0,36μg g−1, Cd-0,027μg g−1, Ni-0,29μg g−1, Pb-0,56μg g−1, Mn-1,96μg g−1, Zn-0,58μg g−1 in 2nd period. The variables that raise heavy metal levels include: high traffic volume, industrial operations and urban heating activities. Although the study was brief, it demonstrated that P. furfuracea is an effective bioaccumulator and bioindicator organism for future biomonitoring studies.

Kaynakça

  • [1] Khamweera, P., Chaloyard, N., Klaysood, A., Soottitantawat, S., Polyiam, W., Phokaeoc, S., Sutthisangiam, N., Visutsak, P. 2024. “Exploitation of an ontology in a semantic web: A case study transferring Thai lichen data into domain ontologies”, Management & Policy Issues, 16 (1): 39-46.
  • [2] Bubach, D.F., Catan, S.P., Arribere, M.A., Dieguez, M.C., Garcia, P.E., Messuti, M.I. 2024. “Mercury content and elemental composition of fruticose lichens from Nahuel Huapi National park (Patagonia, Argentina): Time trends in transplanted and in situ grown thalli”, Atmospheric Pollution Research. 15 (2): 101988.
  • [3] Saleh, S.S.N.A., Abas, A. 2023. “Monitoring Heavy Metal Concentrations Using Transplanted Lichen in a Tourism City of Malaysia”, Sustainability, 15(7): 5885
  • [4] Vannini, A., Pagano, L., Bartoli, M., Fedeli, R., Malcevschi, A., Sidoli, M., Magnani, G., Pontiroli, D., Riccò, M., Marmiroli, M., Petraglia, A., Loppi, S. 2024. “Accumulation and release of cadmium ions in the Lichen Evernia prunastri (L.) Ach. and wood-derived biochar: implication for the use of biochar for environmental biomonitoring”, Toxics, 12(1):66.
  • [5] Hernández, J.M., de la Fournière, E.M., Ramos, C.P. Debray, M.E., Plá, R.R., Jasan, R.C., Invernizzi, R., Brizuela, L.G.R., Cañas,M.S. 2024. “Contribution of Mine-Derived Airborne Particulate Matter to Ca, Fe, Mn and S Content and Distribution in the Lichen Punctelia hypoleucites Transplanted to Bajo de la Alumbrera Mine, Catamarca (Argentina)”, Arch Environ Contam Toxicol, 86(2):140-151.
  • [6] Kumari, K., Kumar, V., Nayaka, S., Saxena, G., Sanyal, I. 2024. “Physiological alterations and heavy metal accumulation in the transplanted lichen Pyxine cocoes (Sw.) Nyl. in Lucknow city, Uttar Pradesh”, Environ Monit Assess , 196(1):84.
  • [7] Lawal, O., Ochei, L.C. 2024. “Lichen - air quality association rule mining for urban environments in the tropics”, Int J Environ Health Res, 34(3):1713-1724.
  • [8] Adžemović, S., Aliefendić, S., Mehić, E., Ranica, A., Vehab, I., Alagić, N., Delibašić, S., Herceg, K., Karić, M., Hadžić, B., Gojak‑Salimović, S., Ljubijankić, N.,Džepina, K., Ramić, E., Huremović, J. 2023. “Estimation of atmospheric deposition utilizing lichen Hypogymnia physodes, moss Hypnum cupressiforme and soil in Bosnia and Herzegovina”, Int. J. Environ. Sci. Technol, 20: 1905–1918.
  • [9] Lucadamo, L., Anna, C., Gallo, L. 2017. “Local wind monitoring matched with lichen Pseudevernia furfuracea (L.) Zopf transplantation technique to assess the environmental impact of a biomass power plant," Turkish Journal of Botany, 41 (2): 4.
  • [10] Tretiach, M., Adamo, P., Bargagli, R., Baruffo, L., Carletti, L., Crisafulli, P., Giordano, S., Modenesi, P., Orlando, S., Pittao, E. 2007. “Lichen and moss bags as monitoring devices in urban areas. Part I: influence of exposure on sample vitality”, Environ Pollut, 146: 380–391.
  • [11] Tretiach, M., Candotto, Carniel. F., Loppi, S., Carniel, A., Bortolussi, A., Mazzilis, D., Del Bianco, C. 2011. “Lichen transplants as a suitable tool to identify mercury pollution from waste incinerators: a case study from NE Italy”, Environ Monit Assess, 175 (1-4):589-600.
  • [12] Kodnik, D., Winkler, A., Candotto, Carniel F., Tretiach, M. 2017. “Biomagnetic monitoring and element content of lichen transplants in a mixed land use area of NE Italy”, Sci Total Environ, 1;595:858-867.
  • [13] Takano, A.P.C., Rybak, J., Veras, M.M. 2024. “Bioindicators and human biomarkers as alternative approaches for cost-effective assessment of air pollution exposure”, Front. Environ. Eng, 3:1346863.
  • [14] Budzyńska-Lipka, W. 2022. Świsłowskiand, P., Rajfur, M., “Biological monitoring using lichens as a source of information about contamination of mountain with heavy metals”, Ecol Chem Eng S, 29(2):155-168.
  • [15] Garty, J. 2000. Trace Metals in the Environment, 4th ed, 245-276, Rijeka.
  • [16] Capozzi, F., Giordano, S., Di Palma A., Spagnuolo, V., De Nicola, F., Adamo, P. 2016. “Biomonitoring of atmospheric pollution by moss bags: Discriminating urban-rural structure in a fragmented landscape”, Chemosphere, 149: 211-8.
  • [17] Mlakar, L.T., Horvat, M., Kotnik, J., Jeran, Z., Vuk, T., Mrak, T.,Fajon, V. 2010. “Biomonitoring with epiphytic lichens as a complementary method for the study of mercury contamination near a cement plant”, Environmental Monitoring and Assessment, 181(1–4): 225–241.
  • [18] Cloquet, C., Muynck, D.D., Signoret, J.,Vanhaecke, F. 2009. “Urban/periurban aerosol survey by determination of the concentration and isotopic composition of Pb collected by transplanted lichen Hypogymnia physodes”, Environ. Sci. Technol, 43: 623-629.
  • [19] Tarawneh, A. H.2021. “Assessment of Lichens as Biomonitors of Heavy Metal Pollution in Selected Mining Area, Slovakia”, Pakistan Journal of Analytical & Environmental Chemistry, 22(1): 53–59.
  • [20] Abecasis, L., Gamelas, C. A., Justino, A. R., Dionísio, I., Canha, N., Kertesz, Z., Almeida, S. M. 2022. “Spatial Distribution of Air Pollution, Hotspots and Sources in an Urban-Industrial Area in the Lisbon Metropolitan Area, Portugal-A Biomonitoring Approach”, International Journal of Environmental Research and Public Health, 19(3): 1364.
  • [21] Trzyna, A., Rybak, J., Górka, M., Olszowski, T., Kamińska, J. A., Węsierski, T., Majder-Łopatka, M. 2023. “Comparison of active and passive methods for atmospheric particulate matter collection: From case study to a useful biomonitoring tool”, Chemosphere, 334: 139004.
  • [22] Lucadamo, L., Gallo, L., Corapi, A. 2022. “Detection of air quality improvement within a suburban district (southern Italy) by means of lichen biomonitoring”, Atmospheric Pollution Research, 13: 101346.
  • [23] Grifoni, L., Winkler, A., Di Lella, L.A., Buemi, L.P., Sgamellotti, A., Spagnuolo, L., Loppi, S. 2024. “Magnetic and chemical biomonitoring of particulate matter at cultural heritage sites: The Peggy Guggenheim Collection case study (Venice, Italy)”, Environmental Advances, 15: 100455.
  • [24] Boonpeng, C., Sangiamdee, D., Noikrad, S., Boonpragob, K. 2023. “Assessing Seasonal Concentrations of Airborne Potentially Toxic Elements in Tropical Mountain Areas in Thailand Using the Transplanted Lichen Parmotrema Tinctorum (Despr. ex Nyl.) Hale”, Forests, 14(3): 611.
  • [25] Loppi, S., Ravera, S., Paoli, L., “Coping with uncertainty in the assessment of atmospheric pollution with lichen transplants”, Environmental Forensics, 20(3): 228-233.
  • [26] Godinho, R.M., Freitas, M.C., Wolterbeek, H.T. 2019. “Assessment of Lichen Vitality During a Transplantation Experiment to a Polluted Site”, J.Atmos.Chem, 49: 355–361, (2004).
  • [27] Carreras, H.A., Pignata, M.L. 2002. “Biomonitoring of heavy metals and air quality in Cordoba City, Argentina, using transplanted lichens”, Environ Pollut, 117(1): 77-87.
  • [28] Suchara, I., Sucharová, J., Holá, M. 2015. “A quarter century of biomonitoring atmospheric pollution in the Czech Republic”, Environmental Science and Pollution Research, 24(13): 11949–11963.
  • [29] Abas, A., Aiyub, K., Awang, A. 2022. “Biomonitoring potentially toxic elements (PTEs) using lichen transplant Usnea misaminensis: A Case Study from Malaysia”, Sustainability, 14(12): 7254.
  • [30] Incerti, G., Cecconi, E., Capozzi, F., Adamo, P., Bargagli, R., Benesperi, R., Carniel, F.C., Cristofolini, F., Giordano, S., Puntillo, D., Spagnuolo, V., Tretiach , M. 2017. “Infraspecific variability in baseline element composition of the epiphytic lichen Pseudevernia furfuracea in remote areas: implications for biomonitoring of air pollution”, Environ Sci Pollut Res Int, 24(9): 8004-8016.
  • [31] Paola, M., Paolo, G., Paolo, M., Luisa, A.M., Magi, E., Francesco, S. 2014. “Bioaccumulation capacity of two chemical varieties of the lichen Pseudevernia furfuracea”, Ecological indicators, 45: 605-610.
  • [32] Brodo, I.M. 1961. “Transplant experiments with corticolous lichens using a new technique”. Ecology 42(4): 838-841. [33] YEOR. 2019. “Yozgat Union of Chambers and Commodity Exchanges”, Yozgat Economic Outlook Report.
  • [34] http://www.yozgat.gov.tr/sanayi-ticaret-verileri. Access date : 25/07/2024.
  • [35] ESR. 2022. “Environmental Status Report”, Yozgat Governorate, Provincial Directorate of Environment, Urbanisation, and Climate Change.
  • [36] https://gezilecekyerlertr.com/yozgat-nerede/. Access date: 25/07/2024.
  • [37] Topal, M., Arslan Topal, E. I., Öbek, E., Aslan, A. 2023. “Determination of some trace elements in various lichens as biomonitors of pollution and assessment of pollution status”, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(3): 672-681.
  • [38] Cecconi E, Fortuna L, Peplis M, Tretiach M. 2021. “Element accumulation performance of living and dead lichens in a large-scale transplant application”, Environ Sci Pollut Res Int, 28(13): 16214-16226.
  • [39] Ferah, K. 2019. “Rize, Trabzon ve Artvin İllerindeki Hava Kirliliğinin Cladonia rangiformis ve Pseudevernia furfuracea Türleri Kullanılarak Belirlenmesi”, MSc thesis, Recep Tayyip Erdoğan University Institute of Science and Technology, Rize, 32-50.
  • [40] Kodnik, D., Candotto, Carniel F., Licen, S., Tolloi, A., Barbieri, P., Tretiach, M. 2015. “Seasonal variations of PAHs content and distribution patterns in a mixed land use area: a case study in NE Italy with the transplanted lichen Pseudevernia furfuracea”, Atmos. Environ, 113: 255–263.
  • [41] Nascimbene, J., Tretiach, M., Corana, F., Lo, Schiavo F., Kodnik, D., Dainese, M., Mannucci, B. 2014. “Patterns of traffic polycyclic aromatic hydrocarbon pollution in mountain areas can be revealed by lichen biomonitoring: a case study in the dolomites (eastern Italian Alps)”, Sci. Total Environ, 475: 90–96.
  • [42] Tretiach, M., Crisafulli, P., Pittao, E., Rinino, S., Roccotiello, E.,Modenesi, P. 2005. “Isidia ontogeny and its effects on the CO2 gas exchanges of the epiphytic lichen Pseudevernia furfuracea (L.) Zopf”, Lichenologist, 37: 445–462.
  • [43] https://www.dogakolik.com/cankiri/yaprakli-buyuk-yayla/, Access date: 25/07/2024.
  • [44] Barnes, J, D., Balaguer, L., Manrique, E., Elvira, S., Davison, A,W. 1992. “A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants”, Environ Exp Bot, 32: 83–100.
  • [45] Giordano, S., Adamo, P., Spagnuolo ,V., Tretiach, M., Bargagli, R. 2013. “Accumulation of airborne trace elements in mosses, lichens and synthetic materials exposed at urban monitoring stations: towards a harmonisation of the moss-bag technique”, Chemosphere, 90(2): 292-9.
  • [46] Onder, S., Dursun, S. 2006. “Airborne heavy metal pollution of Cedrus libani (A. Rich) in the city centre of Konya (Turkey)”, Atmospheric Environment, 40: 1122-1133.
  • [47] Aksoy, A., Leblebici, Z., Halici, M.G. 2010. Plant Adaptation and Phytoremediation, 1st ed, M. Ashraf, M. Ozturk, M.S.A. Ahmad, 59-71, Türkiye.
  • [48] Işık, V., Vardar, Ç., Aksoy, A., Yıldız, A. 2023. “Biomonitoring of heavy metals by Pseudevernia furfuracea (L.) Zopf in Aksaray city, Turkey”, EQA - International Journal of Environmental Quality, 56(1): 52–61.
  • [49] Allen , S.E. 1989. Chemical Analysis of ecological materials, 2nd ed, Oxford.
  • [50] Finkelman, R. B. 1993. Trace and Minor Elements in Coal, Organic Geochemistry, Chapter 28, pp 593-607. New York
  • [51] Ozkan, A. 2017. “Antakya-Cilvegözü Karayolu Etrafındaki Tarım Arazilerinde ve Bitkilerdeki Ağır Metal Kirliliği”, Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32: 9-18.
  • [52] Agnan, Y., Probst, A. 2017. Sejalon-Delmas, N., “Evaluation of lichen species resistance to atmospheric metal pollution by coupling diversity and bioaccumulation approaches : a new bioindication scale for french forested areas”, Ecological Indicators, 72: 99-110.
  • [53] Gerdol, R., Marchesini, R., lacumin P., Brancaleoni L. 2014. “Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors”, Chemosphere, 108: 388-395.
  • [54] Loppi, S., Frati, L., Paoli, L., Bigagli, V., Rossetti, C., Bruscoli, C., Carsini, A. 2004. “Flavoparmalia coperata thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme (central Italy)”, Sci Total Environ, 326: 113–122.
  • [55] Guidotti, M., Stella, D., Dominici, C., Blasi, G., Owczarek, M., Vitali, M., Protano, C. 2009. “Monitoring of traffic-related pollution in a province of central Italy with transplanted lichen Pseudevernia furfuracea”, Bull Environ Contam Toxicol, 83(6): 852-8.
  • [56] Sorbo, S., Aprile, G., Strumia, S., Castaldo, C. R., Leone, A., Basile. A. 2008 “Trace element accumulation in Pseudevernia furfuracea (L.) Zopf exposed in Italy’s so called Triangle of Death”, Sci Total Environ, 407: 647–654.
  • [57] Sujetovien, G. 2015. Recent Advances in Lichenology, 1st ed, New Delhi, India, 87-119.
  • [58] Hölwarth, M. 1982. “Uberwachung statischer schwerme-tallimmissionen mit Hilfe eines bioindikators stab-Reinhalt luft”, 42: 373-378.
  • [59] Markert, B. 1993. Plants as Biomonitors, Indicators for Heavy Metals in the Terrestrial Environments, 1st ed, Weinheim.
  • [60] Oztetik, E., Cicek, A. 2011. “Effects of urban air pollutants on elemental accumulation and identification of oxidative stress biomarkers in the transplanted lichen Pseudevernia furfuracea”, Environ Toxicol Chem, 30(7): 1629-36.
  • [61] Woolhouse, H, M. 1983. Physiological Plant Ecology III, New York, 245-300.
  • [62] Lu, C, M., Chau, C, W., Zhang, J, H. 2000. “Acute Toxicity of Excess Mercury on The Photosynthetic Performance of Cyanobacterium, S. platensis-Assessment by Chlorophyll Fluorescence Analysis”, Chemosphere, 41:191-196.
  • [63] Wakefield, J, M., Bhattacharjee, J. 2012. “Effect of air Pollution on Chlorophyll Content and Lichen Morphology in Northeastern Louisiana”, The American Bryological and Lichenological Society, 28(4): 104-114.
  • [64] Banerjee, S., Ram, S. S., Mukhopadhyay, A., Jana, N., Sudarshan, M., Chakraborty, A. 2022. Potential of Epiphytic Lichen Pyxine cocoes, as an Indicator of Air Pollution in Kolkata, India. Proceedings of the National Academy of Sciences India Section B Biological Sciences, 93(1), 165–180.
  • [65] Bubach, D. F., Catán, S. P., Arribére, M. A., Diéguez, M. C., García, P. E., Messuti, M. I. 2024. Mercury content and elemental composition of fruticose lichens from Nahuel Huapi National park (Patagonia, Argentina): Time trends in transplanted and in situ grown thalli. Atmospheric Pollution Research, 15(2), 101988.
  • [66] Hernández, J. M., De La Fournière, E. M., Ramos, C. P., Debray, M. E., Plá, R. R., Jasan, R. C., Invernizzi, R., Brizuela, L. G. R., Cañas, M. S. 2024. Contribution of Mine-Derived Airborne Particulate Matter to Ca, Fe, Mn and S Content and Distribution in the Lichen Punctelia hypoleucites Transplanted to Bajo de la Alumbrera Mine, Catamarca (Argentina). Archives of Environmental Contamination and Toxicology, 86(2), 140–151.
  • [67] Kumari, K., Kumar, V., Nayaka, S., Saxena, G., & Sanyal, I. 2024. Physiological alterations and heavy metal accumulation in the transplanted lichen Pyxine cocoes (Sw.) Nyl. in Lucknow city, Uttar Pradesh. Environmental Monitoring and Assessment, 196(1).
  • [68] Boonpeng, C., Sangiamdee, D., Noikrad, S., Boonpragob, K. 2023. Assessing Seasonal Concentrations of Airborne Potentially Toxic Elements in Tropical Mountain Areas in Thailand Using the Transplanted Lichen Parmotrema Tinctorum (Despr. ex Nyl.) Hale. Forests, 14(3), 611.
  • [69] Massimi, L., Castellani, F., Protano, C., Conti, M. E., Antonucci, A., Frezzini, M. A., Galletti, M., Mele, G., Pileri, A., Ristorini, M., Vitali, M., Canepari, S. 2020. Lichen transplants for high spatial resolution biomonitoring of Persistent Organic Pollutants (POPs) in a multi-source polluted area of Central Italy. Ecological Indicators, 120, 106921.
  • [70] Cecconi, E., Fortuna, L., Peplis, M., Tretiach, M. 2020. Element accumulation performance of living and dead lichens in a large-scale transplant application. Environmental Science and Pollution Research, 28(13), 16214–16226.
  • [71] https://www.nufusune.com/yozgat-nufusu, Access date: 20/12/2024.
  • [72] Halici, M.G., Aksoy, A., Demirezen, D.2005. I. Ulusal Erciyes Sempozyumu Bildiriler Kitabı, 23–25 Ekim 2003,Erciyes/Kayseri, pp. 456–461.
Toplam 71 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ekoloji (Diğer)
Bölüm Makaleler
Yazarlar

Volkan Işık 0000-0002-3324-5771

Atila Yıldız 0000-0003-3940-9199

Yayımlanma Tarihi 25 Nisan 2025
Gönderilme Tarihi 15 Ekim 2024
Kabul Tarihi 6 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 1

Kaynak Göster

APA Işık, V., & Yıldız, A. (2025). Accumulation of Airborne Trace Elements in Transplanted Pseudevernia furfuracea (L.) Zopf Exposed at Urban Monitoring Stations in Yozgat Province, Türkiye. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(1), 84-95. https://doi.org/10.19113/sdufenbed.1567997
AMA Işık V, Yıldız A. Accumulation of Airborne Trace Elements in Transplanted Pseudevernia furfuracea (L.) Zopf Exposed at Urban Monitoring Stations in Yozgat Province, Türkiye. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Nisan 2025;29(1):84-95. doi:10.19113/sdufenbed.1567997
Chicago Işık, Volkan, ve Atila Yıldız. “Accumulation of Airborne Trace Elements in Transplanted Pseudevernia Furfuracea (L.) Zopf Exposed at Urban Monitoring Stations in Yozgat Province, Türkiye”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, sy. 1 (Nisan 2025): 84-95. https://doi.org/10.19113/sdufenbed.1567997.
EndNote Işık V, Yıldız A (01 Nisan 2025) Accumulation of Airborne Trace Elements in Transplanted Pseudevernia furfuracea (L.) Zopf Exposed at Urban Monitoring Stations in Yozgat Province, Türkiye. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 1 84–95.
IEEE V. Işık ve A. Yıldız, “Accumulation of Airborne Trace Elements in Transplanted Pseudevernia furfuracea (L.) Zopf Exposed at Urban Monitoring Stations in Yozgat Province, Türkiye”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 29, sy. 1, ss. 84–95, 2025, doi: 10.19113/sdufenbed.1567997.
ISNAD Işık, Volkan - Yıldız, Atila. “Accumulation of Airborne Trace Elements in Transplanted Pseudevernia Furfuracea (L.) Zopf Exposed at Urban Monitoring Stations in Yozgat Province, Türkiye”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/1 (Nisan 2025), 84-95. https://doi.org/10.19113/sdufenbed.1567997.
JAMA Işık V, Yıldız A. Accumulation of Airborne Trace Elements in Transplanted Pseudevernia furfuracea (L.) Zopf Exposed at Urban Monitoring Stations in Yozgat Province, Türkiye. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29:84–95.
MLA Işık, Volkan ve Atila Yıldız. “Accumulation of Airborne Trace Elements in Transplanted Pseudevernia Furfuracea (L.) Zopf Exposed at Urban Monitoring Stations in Yozgat Province, Türkiye”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 29, sy. 1, 2025, ss. 84-95, doi:10.19113/sdufenbed.1567997.
Vancouver Işık V, Yıldız A. Accumulation of Airborne Trace Elements in Transplanted Pseudevernia furfuracea (L.) Zopf Exposed at Urban Monitoring Stations in Yozgat Province, Türkiye. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29(1):84-95.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.