Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Intrinsic Brightness Variations of Stars on Transit: An Analysis of WASP-19 and WASP-33 Systems

Yıl 2025, Cilt: 29 Sayı: 1, 158 - 166, 25.04.2025
https://doi.org/10.19113/sdufenbed.1603303

Öz

This study involves an analysis of the TESS light curves of the WASP-19 and WASP-33 systems. While the host star in the WASP-19 system exhibits solar-like activity, the host star in the WASP-33 system pulsates. Both systems contain one transiting exoplanet. The research aims to examine the potential effects of intrinsic brightness variations in host stars on the analysis of transit light curves for these exoplanets. Light curves were analyzed both in their original form and after removing the intrinsic brightness variations of the host stars. The analyses concluded that the intrinsic brightness variations of the host stars in both systems do not significantly affect the determination of exoplanetary parameters through light curve modeling. However, this conclusion does not apply if the host star's intrinsic brightness variation exceeds the transit depth.

Kaynakça

  • [1] Struve, O., 1952, Proposal for a project of high-precision stellar radial velocity work, The Observatory, 72, 199-200.
  • [2] Wolszczan, A., Frail, D.A., 1992, A planetary system around the millisecond pulsar PSR1257 + 12, Nature, 355(6356), 145-147.
  • [3] Mayor, M., Queloz, D., 1995, A Jupiter-mass companion to a solar-type star, Nature, 378(6555), 355-359.
  • [4] NASA Exoplanet Archive, “Exoplanet and Candidate Statistics”, https://exoplanetarchive.ipac.caltech.edu/index.html (Erişim tarihi: 10 Aralık 2024)
  • [5] Loeb, A., Gaudi, B. S., 2003, Periodic Flux Variability of Stars due to the Reflex Doppler Effect Induced by Planetary Companions, The Astrophysical Journal, 588 (2), L117-L120.
  • [6] Barbier, H., López, E., 2021, Kepler Planetary Systems: Doppler Beaming Effect Significance, Revista Mexicana de Astronomía y Astrofísica, 57, 123-132.
  • [7] Mazeh, T., Nachmani, G., Sokol, G., 2012, Kepler KOI-13.01 - Detection of beaming and ellipsoidal modulations pointing to a massive hot Jupiter, Astronomy & Astrophysics, 541 (A56), 9.
  • [8] von Essen, C., Mallonn, M., Borre, C. C., 2020, TESS unveils the phase curve of WASP-33b. Characterization of the planetary atmosphere and the pulsations from the star, Astronomy & Astrophysics, 639 (A34), 19.
  • [9] Bruno, G., Deleuil, M., 2023, Stellar activity and transits, Star-Planet Interactions, 65.
  • [10] Bókon, A., Kálmán, Sz., Bíró, I. B., Szabó, M. Gy., 2023, Stellar pulsations interfering with the transit light curve: Configurations with false positive misalignment, Astronomy & Astrophysics, 674 (A186), 14.
  • [11] Tregloan-Reed, J., Southworth, J., Tappert, C., 2013, Transits and starspots in the WASP-19 planetary system, Monthly Notices of the Royal Astronomical Society, 428 (4), 3671-3679.
  • [12] von Essen, C., Czesla, S., Wolter, U., 2014, Pulsation analysis and its impact on primary transit modeling in WASP-33, Astronomy & Astrophysics, 561 (A48), 20.
  • [13] Cortés-Zuleta, P., Rojo, P., Wang, S., 2020, TraMoS. V. Updated ephemeris and multi-epoch monitoring of the hot Jupiters WASP-18Ab, WASP-19b, and WASP-77Ab, Astronomy & Astrophysics, 636 (A98), 17.
  • [14] Chakrabarty, A., Sengupta, S., 2019, Precise Photometric Transit Follow-up Observations of Five Close-in Exoplanets: Update on Their Physical Properties, The Astronomical Journal, 158 (39), 17.
  • [15] Hebb, L., Collier-Cameron, A., Triaud, A. H. M. J., 2010, WASP-19b: The Shortest Period Transiting Exoplanet Yet Discovered, The Astrophysical Journal, 708 (1), 224-231.
  • [16] Collier Cameron, A., Guenther, E., Smalley, B., 2010, Line-profile tomography of exoplanet transits - II. A gas-giant planet transiting a rapidly rotating A5 star, Monthly Notices of the Royal Astronomical Society, 407 (1), 507-514.
  • [17] Ricker, G. R., Winn, J. N., Vanderspek, R., 2015, Transiting Exoplanet Survey Satellite (TESS), Journal of Astronomical Telescopes, Instruments, and Systems, 1 (1), 014003.
  • [18] Caldwell, D. A., Tenenbaum, P., Twicken, J. D., 2020, TESS Science Processing Operations Center FFI target list products, Research Notes of the AAS, 4 (11), 201.
  • [19] Lightkurve Collaboration, 2018, Lightkurve: Kepler and TESS time series analysis in Python, Astrophysics Source Code Library, ascl:1812.013.
  • [20] Lomb, N. R., 1976, Least-Squares Frequency Analysis of Unequally Spaced Data, Astrophysics and Space Science, 39 (2), 447-462.
  • [21] Scargle, J. D., 1982, Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data., Astrophysical Journal, 263, 835-853.
  • [22] Baran, A. S., Koen, C., 2021, A Detection Threshold in the Amplitude Spectra Calculated from TESS Time-Series Data, Acta Astronomica, 71 (2), 113-121.
  • [23] Bowman, D. M., Michielsen, M., 2021, Towards a systematic treatment of observational uncertainties in forward asteroseismic modelling of gravity-mode pulsators, Astronomy & Astrophysics, 656 (A158), 20.
  • [24] Southworth, J., Maxted, P. F. L., Smalley, B., 2004, Eclipsing binaries in open clusters - II. V453 Cyg in NGC 6871, Monthly Notices of the Royal Astronomical Society, 351 (4), 1277-1289.
  • [25] Levenberg, K., 1944, A method for the solution of certain problems in least squares, Quarterly of Applied Mathematics, 2, 164-168.
  • [26] Marquardt, D. W., 1963, An algorithm for least-squares estimation of nonlinear parameters, Journal of the Society for Industrial and Applied Mathematics, 11, 431-441.
  • [27] Agol, E., Steffen, J., Sari, R., 2005, On detecting terrestrial planets with timing of giant planet transits, Monthly Notices of the Royal Astronomical Society, 359 (2), 567-579.
  • [28] Nesvorný, D., 2009, Transit Timing Variations for Eccentric and Inclined Exoplanets, The Astrophysical Journal, 701 (2), 1116-1122.
  • [29] Aladağ, Y., Akyüz, A., Baştürk, Ö., 2021, Geçiş Zamanları Değişimi Yöntemiyle HAT-P-16b ve TrES-3b Ötegezegenlerinin İncelenmesi, Turkish Journal of Astronomy and Astrophysics, 2 (1), 28-37.
  • [30] Barros, S. C. C., Boué, G., Gibson, N. P., 2013, Transit timing variations in WASP-10b induced by stellar activity, Monthly Notices of the Royal Astronomical Society, 430 (4), 3032-3047.
  • [31] Stassun, K. G., Collins, K. A., Gaudi, B. S., 2017, Accurate Empirical Radii and Masses of Planets and Their Host Stars with Gaia Parallaxes, The Astronomical Journal, 153 (136), 20.
  • [32] Van Hamme, W., 1993, New limb-darkening coefficients for modeling binary star light curves, Astronomical Journal, 106, 2096.
  • [33] Lendl, M., Gillon, M., Queloz, D., 2013, A photometric study of the hot exoplanet WASP-19b, Astronomy & Astrophysics, 552 (A2), 11.
  • [34] Hellier, C., Anderson, D. R., Collier-Cameron, A., 2011, On the Orbit of the Short-period Exoplanet WASP-19b, The Astrophysical Journal Letters, 730 (L31), 4.
  • [35] Turner, J. D., Pearson, K. A., Biddle, L. I., 2016, Ground-based near-UV observations of 15 transiting exoplanets: constraints on their atmospheres and no evidence for asymmetrical transits, Monthly Notices of the Royal Astronomical Society, 459 (1), 789-819.
  • [36] Yüksel, R. C., Özdarcan, O., 2024, Seçilen Bazı Gezegenli Sistemlerin Kepler, TESS ve SuperWASP Fotometrik Verileri Kullanılarak İncelenmesi, Turkish Journal of Astronomy and Astrophysics, 5 (2), 28-36.
  • [37] Mandel, K., Agol, E., 2002, Analytic Light Curves for Planetary Transit Searches, The Astrophysical Journal, 580 (2), L171-L175.
  • [38] Pearson, K. A., Turner, J. D., Sagan, T. G., 2014, Photometric observation of HAT-P-16b in the near-UV, New Astronomy, 27, 102-110.
  • [39] Sanchis-Ojeda, R., Winn, J. N., Marcy, G. W., 2013, Kepler-63b: A Giant Planet in a Polar Orbit around a Young Sun-like Star, The Astrophysical Journal, 775 (54), 13.

Yıldızların Bünyesel Parlaklık Değişimlerinin Örtme Olayı Üzerindeki Etkisi: WASP-19 ve WASP-33 Sistemleri Üzerine Bir Analiz

Yıl 2025, Cilt: 29 Sayı: 1, 158 - 166, 25.04.2025
https://doi.org/10.19113/sdufenbed.1603303

Öz

Bu çalışma, WASP-19 ve WASP-33 sistemlerinin TESS ışık eğrilerinin bir analizini içermektedir. WASP-19 sistemindeki barınak yıldız Güneş benzeri aktivite gösterirken, WASP-33 sistemindeki barınak yıldız zonklama yapmaktadır. Her iki sistemde de transit geçiş yapan birer ötegezegen bulunur. Bu araştırma kapsamında, barınak yıldızları bünyesel parlaklık değişimi gösteren ötegezegenlerin transit ışık eğrisi analizinde ne tür etkilerle karşılaşılabileceğinin bir incelemesi amaçlanmıştır. Işık eğrileri, hem orijinal haliyle hem de barınak yıldızın bünyesel parlaklık değişimlerinden arındırılmış haliyle analiz edilmiştir. Yapılan analizler her iki sistemdeki barınak yıldızın bünyesel parlaklık değişimlerinin ötegezegene ilişkin parametrelerin ışık eğrisi modellemesi ile hesaplanmasında önemli bir etkisi olmadığı sonucuna varılmıştır. Ancak bu sonuç barınak yıldızın transit derinliğinden daha derin bünyesel parlaklık değişimi göstermesi durumunda geçerli değildir.

Kaynakça

  • [1] Struve, O., 1952, Proposal for a project of high-precision stellar radial velocity work, The Observatory, 72, 199-200.
  • [2] Wolszczan, A., Frail, D.A., 1992, A planetary system around the millisecond pulsar PSR1257 + 12, Nature, 355(6356), 145-147.
  • [3] Mayor, M., Queloz, D., 1995, A Jupiter-mass companion to a solar-type star, Nature, 378(6555), 355-359.
  • [4] NASA Exoplanet Archive, “Exoplanet and Candidate Statistics”, https://exoplanetarchive.ipac.caltech.edu/index.html (Erişim tarihi: 10 Aralık 2024)
  • [5] Loeb, A., Gaudi, B. S., 2003, Periodic Flux Variability of Stars due to the Reflex Doppler Effect Induced by Planetary Companions, The Astrophysical Journal, 588 (2), L117-L120.
  • [6] Barbier, H., López, E., 2021, Kepler Planetary Systems: Doppler Beaming Effect Significance, Revista Mexicana de Astronomía y Astrofísica, 57, 123-132.
  • [7] Mazeh, T., Nachmani, G., Sokol, G., 2012, Kepler KOI-13.01 - Detection of beaming and ellipsoidal modulations pointing to a massive hot Jupiter, Astronomy & Astrophysics, 541 (A56), 9.
  • [8] von Essen, C., Mallonn, M., Borre, C. C., 2020, TESS unveils the phase curve of WASP-33b. Characterization of the planetary atmosphere and the pulsations from the star, Astronomy & Astrophysics, 639 (A34), 19.
  • [9] Bruno, G., Deleuil, M., 2023, Stellar activity and transits, Star-Planet Interactions, 65.
  • [10] Bókon, A., Kálmán, Sz., Bíró, I. B., Szabó, M. Gy., 2023, Stellar pulsations interfering with the transit light curve: Configurations with false positive misalignment, Astronomy & Astrophysics, 674 (A186), 14.
  • [11] Tregloan-Reed, J., Southworth, J., Tappert, C., 2013, Transits and starspots in the WASP-19 planetary system, Monthly Notices of the Royal Astronomical Society, 428 (4), 3671-3679.
  • [12] von Essen, C., Czesla, S., Wolter, U., 2014, Pulsation analysis and its impact on primary transit modeling in WASP-33, Astronomy & Astrophysics, 561 (A48), 20.
  • [13] Cortés-Zuleta, P., Rojo, P., Wang, S., 2020, TraMoS. V. Updated ephemeris and multi-epoch monitoring of the hot Jupiters WASP-18Ab, WASP-19b, and WASP-77Ab, Astronomy & Astrophysics, 636 (A98), 17.
  • [14] Chakrabarty, A., Sengupta, S., 2019, Precise Photometric Transit Follow-up Observations of Five Close-in Exoplanets: Update on Their Physical Properties, The Astronomical Journal, 158 (39), 17.
  • [15] Hebb, L., Collier-Cameron, A., Triaud, A. H. M. J., 2010, WASP-19b: The Shortest Period Transiting Exoplanet Yet Discovered, The Astrophysical Journal, 708 (1), 224-231.
  • [16] Collier Cameron, A., Guenther, E., Smalley, B., 2010, Line-profile tomography of exoplanet transits - II. A gas-giant planet transiting a rapidly rotating A5 star, Monthly Notices of the Royal Astronomical Society, 407 (1), 507-514.
  • [17] Ricker, G. R., Winn, J. N., Vanderspek, R., 2015, Transiting Exoplanet Survey Satellite (TESS), Journal of Astronomical Telescopes, Instruments, and Systems, 1 (1), 014003.
  • [18] Caldwell, D. A., Tenenbaum, P., Twicken, J. D., 2020, TESS Science Processing Operations Center FFI target list products, Research Notes of the AAS, 4 (11), 201.
  • [19] Lightkurve Collaboration, 2018, Lightkurve: Kepler and TESS time series analysis in Python, Astrophysics Source Code Library, ascl:1812.013.
  • [20] Lomb, N. R., 1976, Least-Squares Frequency Analysis of Unequally Spaced Data, Astrophysics and Space Science, 39 (2), 447-462.
  • [21] Scargle, J. D., 1982, Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data., Astrophysical Journal, 263, 835-853.
  • [22] Baran, A. S., Koen, C., 2021, A Detection Threshold in the Amplitude Spectra Calculated from TESS Time-Series Data, Acta Astronomica, 71 (2), 113-121.
  • [23] Bowman, D. M., Michielsen, M., 2021, Towards a systematic treatment of observational uncertainties in forward asteroseismic modelling of gravity-mode pulsators, Astronomy & Astrophysics, 656 (A158), 20.
  • [24] Southworth, J., Maxted, P. F. L., Smalley, B., 2004, Eclipsing binaries in open clusters - II. V453 Cyg in NGC 6871, Monthly Notices of the Royal Astronomical Society, 351 (4), 1277-1289.
  • [25] Levenberg, K., 1944, A method for the solution of certain problems in least squares, Quarterly of Applied Mathematics, 2, 164-168.
  • [26] Marquardt, D. W., 1963, An algorithm for least-squares estimation of nonlinear parameters, Journal of the Society for Industrial and Applied Mathematics, 11, 431-441.
  • [27] Agol, E., Steffen, J., Sari, R., 2005, On detecting terrestrial planets with timing of giant planet transits, Monthly Notices of the Royal Astronomical Society, 359 (2), 567-579.
  • [28] Nesvorný, D., 2009, Transit Timing Variations for Eccentric and Inclined Exoplanets, The Astrophysical Journal, 701 (2), 1116-1122.
  • [29] Aladağ, Y., Akyüz, A., Baştürk, Ö., 2021, Geçiş Zamanları Değişimi Yöntemiyle HAT-P-16b ve TrES-3b Ötegezegenlerinin İncelenmesi, Turkish Journal of Astronomy and Astrophysics, 2 (1), 28-37.
  • [30] Barros, S. C. C., Boué, G., Gibson, N. P., 2013, Transit timing variations in WASP-10b induced by stellar activity, Monthly Notices of the Royal Astronomical Society, 430 (4), 3032-3047.
  • [31] Stassun, K. G., Collins, K. A., Gaudi, B. S., 2017, Accurate Empirical Radii and Masses of Planets and Their Host Stars with Gaia Parallaxes, The Astronomical Journal, 153 (136), 20.
  • [32] Van Hamme, W., 1993, New limb-darkening coefficients for modeling binary star light curves, Astronomical Journal, 106, 2096.
  • [33] Lendl, M., Gillon, M., Queloz, D., 2013, A photometric study of the hot exoplanet WASP-19b, Astronomy & Astrophysics, 552 (A2), 11.
  • [34] Hellier, C., Anderson, D. R., Collier-Cameron, A., 2011, On the Orbit of the Short-period Exoplanet WASP-19b, The Astrophysical Journal Letters, 730 (L31), 4.
  • [35] Turner, J. D., Pearson, K. A., Biddle, L. I., 2016, Ground-based near-UV observations of 15 transiting exoplanets: constraints on their atmospheres and no evidence for asymmetrical transits, Monthly Notices of the Royal Astronomical Society, 459 (1), 789-819.
  • [36] Yüksel, R. C., Özdarcan, O., 2024, Seçilen Bazı Gezegenli Sistemlerin Kepler, TESS ve SuperWASP Fotometrik Verileri Kullanılarak İncelenmesi, Turkish Journal of Astronomy and Astrophysics, 5 (2), 28-36.
  • [37] Mandel, K., Agol, E., 2002, Analytic Light Curves for Planetary Transit Searches, The Astrophysical Journal, 580 (2), L171-L175.
  • [38] Pearson, K. A., Turner, J. D., Sagan, T. G., 2014, Photometric observation of HAT-P-16b in the near-UV, New Astronomy, 27, 102-110.
  • [39] Sanchis-Ojeda, R., Winn, J. N., Marcy, G. W., 2013, Kepler-63b: A Giant Planet in a Polar Orbit around a Young Sun-like Star, The Astrophysical Journal, 775 (54), 13.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yıldız Astronomisi ve Gezegen Sistemleri
Bölüm Makaleler
Yazarlar

Rahmi Can Yüksel 0000-0002-8221-5640

Orkun Özdarcan 0000-0003-4820-3950

Yayımlanma Tarihi 25 Nisan 2025
Gönderilme Tarihi 17 Aralık 2024
Kabul Tarihi 14 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 1

Kaynak Göster

APA Yüksel, R. C., & Özdarcan, O. (2025). Yıldızların Bünyesel Parlaklık Değişimlerinin Örtme Olayı Üzerindeki Etkisi: WASP-19 ve WASP-33 Sistemleri Üzerine Bir Analiz. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(1), 158-166. https://doi.org/10.19113/sdufenbed.1603303
AMA Yüksel RC, Özdarcan O. Yıldızların Bünyesel Parlaklık Değişimlerinin Örtme Olayı Üzerindeki Etkisi: WASP-19 ve WASP-33 Sistemleri Üzerine Bir Analiz. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Nisan 2025;29(1):158-166. doi:10.19113/sdufenbed.1603303
Chicago Yüksel, Rahmi Can, ve Orkun Özdarcan. “Yıldızların Bünyesel Parlaklık Değişimlerinin Örtme Olayı Üzerindeki Etkisi: WASP-19 Ve WASP-33 Sistemleri Üzerine Bir Analiz”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, sy. 1 (Nisan 2025): 158-66. https://doi.org/10.19113/sdufenbed.1603303.
EndNote Yüksel RC, Özdarcan O (01 Nisan 2025) Yıldızların Bünyesel Parlaklık Değişimlerinin Örtme Olayı Üzerindeki Etkisi: WASP-19 ve WASP-33 Sistemleri Üzerine Bir Analiz. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 1 158–166.
IEEE R. C. Yüksel ve O. Özdarcan, “Yıldızların Bünyesel Parlaklık Değişimlerinin Örtme Olayı Üzerindeki Etkisi: WASP-19 ve WASP-33 Sistemleri Üzerine Bir Analiz”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 29, sy. 1, ss. 158–166, 2025, doi: 10.19113/sdufenbed.1603303.
ISNAD Yüksel, Rahmi Can - Özdarcan, Orkun. “Yıldızların Bünyesel Parlaklık Değişimlerinin Örtme Olayı Üzerindeki Etkisi: WASP-19 Ve WASP-33 Sistemleri Üzerine Bir Analiz”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/1 (Nisan 2025), 158-166. https://doi.org/10.19113/sdufenbed.1603303.
JAMA Yüksel RC, Özdarcan O. Yıldızların Bünyesel Parlaklık Değişimlerinin Örtme Olayı Üzerindeki Etkisi: WASP-19 ve WASP-33 Sistemleri Üzerine Bir Analiz. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29:158–166.
MLA Yüksel, Rahmi Can ve Orkun Özdarcan. “Yıldızların Bünyesel Parlaklık Değişimlerinin Örtme Olayı Üzerindeki Etkisi: WASP-19 Ve WASP-33 Sistemleri Üzerine Bir Analiz”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 29, sy. 1, 2025, ss. 158-66, doi:10.19113/sdufenbed.1603303.
Vancouver Yüksel RC, Özdarcan O. Yıldızların Bünyesel Parlaklık Değişimlerinin Örtme Olayı Üzerindeki Etkisi: WASP-19 ve WASP-33 Sistemleri Üzerine Bir Analiz. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29(1):158-66.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.