Araştırma Makalesi
BibTex RIS Kaynak Göster

Potential of Silicon and Melatonin Amendments to Enhance the Tolerance of Lettuce Plants to Water Deficit Stress

Yıl 2025, Cilt: 39 Sayı: 2, 280 - 296

Öz

Drought is one of the biggest problems nowadays and it will be mandatory to cultivate crops with limited irrigation in the upcoming days. A number of treatments are used to reduce the devastating effects of drought. Silicon and melatonin are popular treatments and, their efficacy was tested in lettuce under drought conditions for the purpose of this study. Thus, two doses of silicon (4 mM/ 8 mM), one dose of melatonin (150 µM), and their co-treatments were conducted in lettuce under two (full irrigation/drought) irrigation regimes. The physiological, photosynthetic, and basic growth parameters were measured in lettuce. Based on these data, 8 mM silicon treatment significantly mitigate the severity of drought stress. It was found that the 8mM silicon treatment had the similar leaf dry weights as the non-drought-treated and leaf fresh weight was also found to be slightly affected by drought. 8 mM silicon treatment also significantly improved the values of chlorophyll a, chlorophyll b, total chlorophyll, protein, and chlorophyll fluorescence in lettuce under drought stress. Additionally, melatonin treatments (150 µM) resulted in significant increases in the examined parameters of the non-drought-treated lettuce groups. Consequently, it was concluded that silicon fertilization alleviated the adverse effects of drought or limited irrigation conditions, whereas, under full irrigation conditions, silicon and melatonin treatments contributed significantly to lettuce cultivation.

Etik Beyan

Yok

Destekleyen Kurum

Yok

Proje Numarası

Yok

Teşekkür

Yok

Kaynakça

  • Ahmad N, Virk AL, Hussain S, Hafeez MB, Haider FU, Rehmani MIA, Yasir TA, Asif A (2022). Integrated application of plant bioregulator and micronutrients improves crop physiology, productivity and grain biofortification of delayed sown wheat. Environmental Science and Pollution Research 29: 52534-52543. https://doi.org/10.1007/s11356-022-19476-5.
  • Ahmad Z, Waraich EA, Akhtar S, Anjum S, Ahmad T, Mahboob W, Abdul-Hafeez O, Tapera T, Labuschagne M, Rizwan M (2018). Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiologiae Plantarum 40: 1-13. https://doi.org/10.1007/s11738-018-2651-6.
  • Akhtar G, Faried HN, Razzaq K, Ullah S, Wattoo FM, Shehzad MA, Sajjad Y, Ahsan M, Javed T, Dessoky ES., Abdelsalam NR, Chattha MS (2022). Chitosan-induced physiological and biochemical regulations confer drought tolerance in pot marigold (Calendula officinalis L.). Agronomy 12(2): 474. https://doi.org/10.3390/agronomy12020474.
  • Akhtar N, Ilyas N, Hayat R, Yasmin H, Noureldeen A, Ahmad P (2021). Synergistic effects of plant growth promoting rhizobacteria and silicon dioxide nano-particles for amelioration of drought stress in wheat. Plant Physiology and Biochemistry 166: 160-176. https://doi.org/10.1016/j.plaphy.2021.05.039.
  • Alotaibi MO, Ikram M, Alotaibi NM, Hussain GS, Ghoneim AM, Younis U, Naz N, Danish S (2023). Examining the role of AMF-Biochar in the regulation of spinach growth attributes, nutrients concentrations, and antioxidant enzymes in mitigating drought stress. Plant Stress 10: 100205. https://doi.org/10.1016/j.stress.2023.100205.
  • Altaf MA, Shahid R, Ren MX, Naz S, Altaf MM, Khan LU, Tiwari RK, Lal MK, Shahid MA, Kumar R, Nawaz MA, Jahan MS, Jan BL, Ahmad P (2022). Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system. Antioxidants 11(2): 309. https://doi.org/10.3390/antiox11020309.
  • Arif Y, Singh P, Bajguz A, Alam P, Hayat S (2021). Silicon mediated abiotic stress tolerance in plants using physio-biochemical, omic approach and cross-talk with phytohormones. Plant Physiology and Biochemistry 166: 278-289. https://doi.org/10.1016/j.plaphy.2021.06.002.
  • Basilio-Apolinar A, Vara LEG, Ramírez-Pimentel JG, Aguirre-Mancilla CL, Iturriaga G, Covarrubias-Prieto J, Raya-Pérez JC (2021). Silicon induces changes in the antioxidant system of millet cultivated in drought and salinity. Chilean Journal of Agricultural Research 81: 655-663. http://dx.doi.org/10.4067/S0718-58392021000400655.
  • Bergmeyer HU (1965). Methods of enzymatic analysis. Academic Press, New York 1965.
  • Beyer Jr WF, Fridovich I (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical biochemistry 161(2): 559-566. https://doi.org/10.1016/0003-2697(87)90489-1
  • Bhardwaj S, Verma T, Kour J, Singh AD, Bhardwaj R, Sharma NR, Ansari S, Raza A, Prasad PVV, Thakur U, Kapoor D (2024). Silicon and nitric oxide modulate growth attributes, antioxidant defense system and osmolytes accumulation in radish (Raphanus sativus L.) under arsenic toxicity. Plant Stress 12: 100473. https://doi.org/10.1016/j.stress.2024.100473.
  • Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3.
  • Bukhari MA, Ahmad Z, Ashraf MY, Afzal M, Nawaz F, Nafees M, Jatoi WN, Malghani NA, Shah AN, Manan A (2021). Silicon mitigates drought stress in wheat (Triticum aestivum L.) through improving photosynthetic pigments, biochemical and yield characters. Silicon 13: 4757-4772. https://doi.org/10.1007/s12633-020-00797-4.
  • Can H (2023). Melatonin application at different doses changes the physiological responses in favor of cabbage seedlings (Brassica oleracea var. capitata) against flooding stress. Gesunde Pflanzen 75: 2733-2745. https://doi.org/10.1007/s10343-023-00873-w.
  • Casey L, Freeman B, Francis K, Brychkova G, McKeown P, Spillane C, Bezrukov A, Zaworotko M, Styles D (2022). Comparative environmental footprints of lettuce supplied by hydroponic controlled-environment agriculture and field-based supply chains. Journal of Cleaner Production 369: 133214. https://doi.org/10.1016/j.jclepro.2022.133214.
  • Chakhchar A, Lamaoui M, Aissam S, Ferradous A, Wahbi S, El Mousadik A, Ibnsouda-Koraichi S, Filali-Maltouf A, El Modafar C (2018). Using chlorophyll fluorescence, photosynthetic enzymes and pigment composition to discriminate drought-tolerant ecotypes of Argania spinosa. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 152: 356-367. https://doi.org/10.1080/11263504.2017.1297334.
  • Chance B, Maehly AC (1955). Assay of catalases and peroxidases. Methods in Enzymology https://doi.org/10.1016/S0076-6879(55)02300-8.
  • Ekinci M, Ors S, Yildirim E, Turan M, Sahin U, Dursun A, Kul R (2020). Determination of physiological indices and some antioxidant enzymes of chard exposed to nitric oxide under drought stress. Russian journal of plant physiology 67: 740-749. https://doi.org/10.1134/S1021443720040056.
  • El-Bauome HA, Doklega SM, Saleh SA, Mohamed AS, Suliman AA, Abd El-Hady MAM (2024). Effects of melatonin on lettuce plant growth, antioxidant enzymes and photosynthetic pigments under salinity stress conditions. Folia Horticulturae 36: 1-17. https://doi.org/10.2478/fhort-2024-0001.
  • Erol UH (2024). Comparison of morphological, biochemical and enzymatic responses of some capsicum species to drought stress during developmental stages. Russian Journal of Plant Physiology 71: 106. https://doi.org/10.1134/S1021443724605895.
  • Faisal M, Faizan M, Soysal S, Alatar AA (2024). Synergistic application of melatonin and silicon oxide nanoparticles modulates reactive oxygen species generation and the antioxidant defense system: a strategy for cadmium tolerance in rice. Frontiers in Plant Science 15: 1484600. https://doi.org/10.3389/fpls.2024.1484600.
  • Fatemi H, Pour BE, Rizwan M (2020). Isolation and characterization of lead (Pb) resistant microbes and their combined use with silicon nanoparticles improved the growth, photosynthesis and antioxidant capacity of coriander (Coriandrum sativum L.) under Pb stress. Environmental Pollution 266: 114982. https://doi.org/10.1016/j.envpol.2020.114982.
  • Haghighi M, Pessarakli M (2013). Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae 161: 111-117. https://doi.org/10.1016/j.scienta.2013.06.034
  • Hameed A, Farooq T, Hameed A, Sheikh MA (2021). Sodium nitroprusside mediated priming memory invokes water-deficit stress acclimation in wheat plants through physio-biochemical alterations. Plant Physiology and Biochemistry 160: 329-340. https://doi.org/10.1016/j.plaphy.2021.01.037.
  • Hassan H, Alatawi A, Abdulmajeed A, Emam M, Khattab H (2021). Roles of Si and SiNPs in improving thermotolerance of wheat photosynthetic machinery via upregulation of PsbH, PsbB and PsbD genes encoding PSII core proteins. Horticulturae 7(2): 16. https://doi.org/10.3390/horticulturae7020016.
  • Hidalgo-Santiago L, Navarro-León E, López-Moreno FJ, Arjó G, González LM, Ruiz JM, Blasco B (2021). The application of the silicon-based biostimulant Codasil® offset water deficit of lettuce plants. Scientia Horticulturae 285: 110177. https://doi.org/10.1016/j.scienta.2021.110177.
  • Kal Ü, Dal Y, Kayak N, Yavuz D, Türkmen Ö, Seymen M (2023). Application of nitrogen for mitigating the adverse effects of flooding stress in lettuce. Journal of Plant Nutrition 46: 4664-4678. https://doi.org/10.1080/01904167.2023.2240831.
  • Kapoor D, Bhardwaj S, Landi M, Sharma A, Ramakrishnan M, Sharma A (2020). The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Applied Sciences 10(16): 5692. https://doi.org/10.3390/app10165692.
  • Khalid MF, Huda S, Yong M, Li L, Li L, Chen ZH, Ahmed T (2023). Alleviation of drought and salt stress in vegetables: crop responses and mitigation strategies. Plant Growth Regulation 99(2): 177-194. https://doi.org/10.1007/s10725-022-00905-x.
  • Khan S, Basit A, Hafeez MB, Irshad S, Bashir S, Bashir S, Maqbool MM, Saddiq MS, Hasnain Z, Aljuaid BS, El-Shehawi AM, Li Y (2021). Moringa leaf extract improves biochemical attributes, yield and grain quality of rice (Oryza sativa L.) under drought stress. Plos one 16(7): e0254452. https://doi.org/10.1371/journal.pone.0254452.
  • Kiremit MS, Akınoğlu G, Mitrovica B, Rakıcıoğlu S (2024). Enhancing drought-salinity stress tolerance in lettuce: Synergistic effects of salicylic acid and melatonin. South African Journal of Botany 172: 212-226. https://doi.org/10.1016/j.sajb.2024.07.021.
  • Kleiber T, Chadzinikolau T, Formela-Luboińska M, Lartey JL, Kosiada T (2024). Enhancing lettuce drought tolerance: The role of organic acids in photosynthesis and oxidative defense. Applied Sciences 14(12): 5119. https://doi.org/10.3390/app14125119.
  • Korkmaz N, Aşkın MA, Altunlu H, Polat M, Okatan V, Kahramanoğlu İ (2022). The effects of melatonin application on the drought stress of different citrus rootstocks. Turkish Journal of Agriculture and Forestry 46(4): 585-600. https://doi.org/10.55730/1300-011X.3027
  • Leitão I, Leclercq CC, Ribeiro DM, Renaut J, Almeida AM, Martins LL, Mourato MP (2021). Stress response of lettuce (Lactuca sativa) to environmental contamination with selected pharmaceuticals: A proteomic study. Journal of Proteomics 245: 104291. https://doi.org/10.1016/j.jprot.2021.104291.
  • Lemos Neto HdS, de Almeida Guimarães M, Mesquita RO, Sousa Freitas WE, de Oliveira AB, da Silva Dias N, Gomes-Filho E (2021). Silicon supplementation induces physiological and biochemical changes that assist lettuce salinity tolerance. Silicon 13: 4075-4089. https://doi.org/10.1007/s12633-020-00715-8.
  • Li J, Abbas K, Wang L, Gong B, Hou S, Wang W, Dai B, Xia H, Wu X, Lü G, Gao H (2023). Drought resistance index screening and evaluation of lettuce under water deficit conditions on the basis of morphological and physiological differences. Frontiers in Plant Science 14. https://doi.org/10.3389/fpls.2023.1228084.
  • Liang D, Ni Z, Xia H, Xie Y, Lv X, Wang J, Lin L, Deng Q, Luo X (2019). Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Scientia Horticulturae 246: 34-43. https://doi.org/10.1016/j.scienta.2018.10.058.
  • Lichtenthaler HK, Buschmann C (2001). Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current Protocols in Food Analytical Chemistry 1(1): F4-3. https://doi.org/10.1002/0471142913.faf0403s01.
  • Mampholo BM, Maboko MM, Soundy P, Sivakumar D (2016). Phytochemicals and overall quality of leafy lettuce (Lactuca sativa L.) varieties grown in closed hydroponic system. Journal of Food Quality 39(6): 805-815. https://doi.org/10.1111/jfq.12234.
  • Markovich O, Zexer N, Negin B, Zait Y, Blum S, Ben-Gal A, RivkaElbaum R (2022). Low Si combined with drought causes reduced transpiration in sorghum Lsi1 mutant. Plant and Soil 477: 57-67. https://doi.org/10.1007/s11104-022-05298-4.
  • Martínez MG, Floquet P, Dupont C, da Silva Perez D,Meyer X M (2020). Assessing the impact of woody and agricultural biomass variability on its behaviour in torrefaction through Principal Component Analysis. Biomass and Bioenergy 134, 105474. https://doi.org/10.1016/j.biombioe.2020.105474.
  • Maslova TG, Markovskaya EF, Slemnev NN (2021). Functions of carotenoids in leaves of higher plants (Review). Biology Bulletin Reviews 11: 476-487. https://doi.org/10.1134/S2079086421050078.
  • Mathews PG (2004). Design of experiments with MINITAB. Quality press.
  • Mavrič Čermelj A, Golob A, Vogel-Mikuš K, Germ M (2021). Silicon mitigates negative impacts of drought and UV-b radiation in plants. Plants 11(1): 91. https://doi.org/10.3390/plants11010091.
  • Michelon N, Pennisi G, Myint NO, Dall’Olio G, Batista LP, Salviano AAC, Gruda NS, Orsini F, Gianquinto G (2020). Strategies for improved yield and water use efficiency of lettuce (Lactuca sativa L.) through simplified soilless cultivation under semi-arid climate. Agronomy 10(9): 1379. https://doi.org/10.3390/agronomy10091379.
  • Niu S, Luo Y, Li D, Cao S, Xia J, Li J, Smith MD (2014). Plant growth and mortality under climatic extremes: an overview. Environmental and Experimental Botany 98: 13-19. https://doi.org-/10.1016/j.envexpbot.2013.10.004.
  • Ors S, Ekinci M, Yildirim E, Sahin U, Turan M, Dursun A (2021). Interactive effects of salinity and drought stress on photosynthetic characteristics and physiology of tomato (Lycopersicon esculentum L.) seedlings. South African Journal of Botany 137: 335-339. https://doi.org/10.1016/j.sajb.2020.10.031.
  • Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010). Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. Journal of Plant Growth Regulation 29: 106–115 (2010). https://link.springer.com/article/10.1007/s00344-009-9120-9.
  • Ramadan KM, El-Beltagi HS, Makhlouf BSI, Khalil SRAE, Al-Daej MI, Shalaby TA, Bendary ES, Saudy HS (2024). Carboxymethyl chitosan improves sugar beet tolerance to drought by controlling enzyme activity and stomatal conductance. Polish Journal of Environmental Studies 34 (1): 791-800.
  • Razi K, Muneer S (2021). Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Critical Reviews in Biotechnology 41: 669-691. https://doi.org/10.1080/07388551.2021.1874280.
  • Ren J, Yang X, Ma C, Wang Y, Zhao J (2021). Melatonin enhances drought stress tolerance in maize through coordinated regulation of carbon and nitrogen assimilation. Plant Physiology and Biochemistry 167: 958-969. https://doi.org/10.1016/j.plaphy.2021.09.007.
  • Şalk A, Arın L, Deveci M, Polat S (2008). Özel sebzecilik. Namık Kemal Üniversitesi Ziraat Fakültesi pp 448.
  • Sattar A, Sher A, Ijaz M, Ul-Allah S, Hussain S, Rasheed U, Hussain J, Al-Qahtani SM, Al-Harbi NA, Mahmoud SF, Ibrahim MFM (2023). Modulation of antioxidant defense mechanisms and morpho-physiological attributes of wheat through exogenous application of silicon and melatonin under water deficit conditions. Sustainability 15(9): 7426. https://doi.org/10.3390/su15097426.
  • Seymen M, Alkhateb R, Mutlu A, Yavuz D (2024a). Do exogenous melatonin and nitric oxide mitigate the adverse effects of flooding stress in spinach? Scientia Horticulturae 330: 113081. https://doi.org/10.1016/j.scienta.2024.113081.
  • Seymen M, Erçetin M, Yavuz D, Kıymacı G, Kayak N, Mutlu A, Kurtar ES (2024b). Agronomic and physio-biochemical responses to exogenous nitric oxide (NO) application in cauliflower under water stress conditions. Scientia Horticulturae 331: 113116. https://doi.org/10.1016/j.scienta.2024.113116.
  • Seymen M, Yavuz D, Can H, Kıymacı G, Türkmen Ö, Paksoy M, Yavuz N, Kayak N, Kurtar ES (2024). Molecular and physiological responses to exogenously applied melatonin in spinach under deficit irrigation conditions. Journal of Plant Growth Regulation 43(6): 1858-1874. https://doi.org/10.1007/s00344-023-11226-2.
  • Shaffique S, Khan MA, Imran M, Kang SM, Park YS, Wani SH, Lee IJ (2022). Research progress in the field of microbial mitigation of drought stress in plants. Frontiers in Plant Science 13: 870626. https://doi.org/10.3389/fpls.2022.870626.
  • Shaffique S, Shah AA, Kang SM, Injamum-Ul-Hoque M, Shahzad R, Azzawi TNIA, Yun BW, Lee IJ (2024). Melatonin: dual players mitigating drought-induced stress in tomatoes via modulation of phytohormones and antioxidant signaling cascades. BMC Plant Biology 24: 1101. https://doi.org/10.1186/s12870-024-05752-8
  • Shin YK, Bhandari SR, Jo JS, Song JW, Lee JG (2021). Effect of drought stress on chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities in lettuce seedlings. Horticulturae 7(8): 238. https://doi.org/10.3390/horticulturae7080238.
  • Sun H, Jia M, Wang Y, Lu H, Wang X (2023). The complexity of melatonin and other phytohormones crosstalk with other signaling molecules for drought tolerance in horticultural crops. Scientia Horticulturae 321: 112348. https://doi.org/10.1016/j.scienta.2023.112348.
  • Tiwari RK, Lal MK, Kumar R, Chourasia KN, Naga KC, Kumar D, Das SK, Zinta G (2021). Mechanistic insights on melatonin‐mediated drought stress mitigation in plants. Physiologia Plantarum 172(2): 1212-1226. https://doi.org/10.1111/ppl.13307.
  • Tufail B, Ashraf K, Abbasi A, Ali HM, Sultan K, Munir T, Khan MT, uz Zaman Q (2023). Effect of selenium on growth, physio-biochemical and yield traits of lettuce under limited water regimes. Sustainability 15(8): 6804. https://doi.org/10.3390/su15086804.
  • TÜİK (2023). Bitkisel Üretim İstatistikleri. https://www.tuik.gov.tr/ (access date:01.06.2024).
  • Ünlükara A, Cemek B, Karaman S, Erşahin S (2008). Response of lettuce (Lactuca sativa var. crispa) to salinity of irrigation water. New Zealand Journal of Crop and Horticultural Science 36(4): 265-273. https://doi.org/10.1080/01140670809510243.
  • Urbutis M, Laužikė K, Samuolienė G (2023). Exogenous phytohormones: effects on lettuce photosynthesis, antioxidant response and growth. Horticulturae 9(7): 792. https://doi.org/10.3390/horticulturae9070792.
  • Velikova V, Yordanov I, Edreva A (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science 151: 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1.
  • Villa e Vila V, Marques PAA, Gomes TM, Nunes AF, Montenegro VG, Wenneck GS, Franco LB (2024). Deficit irrigation with silicon application as strategy to increase yield, photosynthesis and water productivity in lettuce crops. Plants 13(7): 1029. https://doi.org/10.3390/plants13071029.
  • Wahab A, Abdi G, Saleem MH, Ali B, Ullah S, Shah W, Mumtaz S, Yasin G, Muresan CC, Marc RA (2022). Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants 11(13): 1620. https://doi.org/10.3390/plants11131620.
  • Witham FH, Blaydes DF, Devlin RM (1971). Experiments in plant physiology. Wageningen University and Research Library catalog.
  • Zhang H, Zhu J, Gong Z, Zhu JK (2022). Abiotic stress responses in plants. Nature Reviews Genetics 23(2): 104-119. https://doi.org/10.1038/s41576-021-00413-0.
  • Zhang X, Wei S, Sun Q, Wadood SA, Guo B (2018). Source identification and spatial distribution of arsenic and heavy metals in agricultural soil around Hunan industrial estate by positive matrix factorization model, principle components analysis and geo statistical analysis. Ecotoxicology and Environmental Safety 159: 354-362. https://doi.org/10.1016/j.ecoenv.2018.04.072.
  • Zhang Y, Yu SHI, Gong HJ, Zhao HL, Li HL, Hu YH, Wang YC (2018). Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. Journal of Integrative Agriculture 17(10): 2151-2159. https://doi.org/10.1016/S2095-3119(18)62038-6.

Marulda Kuraklık Stresine Karşı Toleransının Silisyum ve Melatonin Uygulamalarıyla Artırılması

Yıl 2025, Cilt: 39 Sayı: 2, 280 - 296

Öz

Kuraklık günümüzün en büyük problemleri arasında yer almaktadır ve önümüzdeki günlerde kısıtlı sulama ile üretim yapma zorunluluğu doğacaktır. Kuraklığın yıkıcı etkilerini azaltmak için günümüzde çeşitli uygulamalar yapılmaktadır. Silisyum ve melatonin popüler uygulamalardan olup çalışmamızın amacı kapsamında marulda kurak şartlarda etkinlikleri test edilmiştir. Bu nedenle, iki doz silisyum (4 mM/8 mM), bir doz melatonin (150 µM) ve bunların combinasyonlar marulda iki (tam sulama/kuraklık) sulama rejimi altında test edilmiştir. Marulda fizyolojik, fotosentetik ve temel büyüme parametreleri ölçülmüş ve bu verilere dayanarak, 8 mM silikon uygulamasının kuraklık stresinin şiddetini önemli ölçüde azalttığı belirlenmiştir. Kurak şartlarda 8 mM silisyum uygulamasının, kuraklık uygulanmayan grup ile benzer yaprak kuru ağırlığına sahip olduğu ve yaprak taze ağırlığının da kuraklıktan daha az etkilendiği tespit edilmiştir. 8 mM silikon uygulaması ayrıca kuraklık stresi altındaki marulda klorofil a, klorofil b, toplam klorofil, protein ve klorofil floresansı değerlerini önemli ölçüde iyileştirdi. Ayrıca, melatonin uygulamaları (150 µM) kuraklık uygulanmayan marul gruplarında incelenen parametrelerde önemli artışlara neden olmuştur. Sonuç olarak, silisyum gübrelemesinin kuraklık veya kısıtlı sulama koşullarının olumsuz etkilerini hafiflettiği, tam sulama koşulları altında ise silisyum ve melatonin uygulamalarının marul yetiştiriciliğine önemli katkı sağladığı belirlenmiştir.

Proje Numarası

Yok

Kaynakça

  • Ahmad N, Virk AL, Hussain S, Hafeez MB, Haider FU, Rehmani MIA, Yasir TA, Asif A (2022). Integrated application of plant bioregulator and micronutrients improves crop physiology, productivity and grain biofortification of delayed sown wheat. Environmental Science and Pollution Research 29: 52534-52543. https://doi.org/10.1007/s11356-022-19476-5.
  • Ahmad Z, Waraich EA, Akhtar S, Anjum S, Ahmad T, Mahboob W, Abdul-Hafeez O, Tapera T, Labuschagne M, Rizwan M (2018). Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiologiae Plantarum 40: 1-13. https://doi.org/10.1007/s11738-018-2651-6.
  • Akhtar G, Faried HN, Razzaq K, Ullah S, Wattoo FM, Shehzad MA, Sajjad Y, Ahsan M, Javed T, Dessoky ES., Abdelsalam NR, Chattha MS (2022). Chitosan-induced physiological and biochemical regulations confer drought tolerance in pot marigold (Calendula officinalis L.). Agronomy 12(2): 474. https://doi.org/10.3390/agronomy12020474.
  • Akhtar N, Ilyas N, Hayat R, Yasmin H, Noureldeen A, Ahmad P (2021). Synergistic effects of plant growth promoting rhizobacteria and silicon dioxide nano-particles for amelioration of drought stress in wheat. Plant Physiology and Biochemistry 166: 160-176. https://doi.org/10.1016/j.plaphy.2021.05.039.
  • Alotaibi MO, Ikram M, Alotaibi NM, Hussain GS, Ghoneim AM, Younis U, Naz N, Danish S (2023). Examining the role of AMF-Biochar in the regulation of spinach growth attributes, nutrients concentrations, and antioxidant enzymes in mitigating drought stress. Plant Stress 10: 100205. https://doi.org/10.1016/j.stress.2023.100205.
  • Altaf MA, Shahid R, Ren MX, Naz S, Altaf MM, Khan LU, Tiwari RK, Lal MK, Shahid MA, Kumar R, Nawaz MA, Jahan MS, Jan BL, Ahmad P (2022). Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system. Antioxidants 11(2): 309. https://doi.org/10.3390/antiox11020309.
  • Arif Y, Singh P, Bajguz A, Alam P, Hayat S (2021). Silicon mediated abiotic stress tolerance in plants using physio-biochemical, omic approach and cross-talk with phytohormones. Plant Physiology and Biochemistry 166: 278-289. https://doi.org/10.1016/j.plaphy.2021.06.002.
  • Basilio-Apolinar A, Vara LEG, Ramírez-Pimentel JG, Aguirre-Mancilla CL, Iturriaga G, Covarrubias-Prieto J, Raya-Pérez JC (2021). Silicon induces changes in the antioxidant system of millet cultivated in drought and salinity. Chilean Journal of Agricultural Research 81: 655-663. http://dx.doi.org/10.4067/S0718-58392021000400655.
  • Bergmeyer HU (1965). Methods of enzymatic analysis. Academic Press, New York 1965.
  • Beyer Jr WF, Fridovich I (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical biochemistry 161(2): 559-566. https://doi.org/10.1016/0003-2697(87)90489-1
  • Bhardwaj S, Verma T, Kour J, Singh AD, Bhardwaj R, Sharma NR, Ansari S, Raza A, Prasad PVV, Thakur U, Kapoor D (2024). Silicon and nitric oxide modulate growth attributes, antioxidant defense system and osmolytes accumulation in radish (Raphanus sativus L.) under arsenic toxicity. Plant Stress 12: 100473. https://doi.org/10.1016/j.stress.2024.100473.
  • Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3.
  • Bukhari MA, Ahmad Z, Ashraf MY, Afzal M, Nawaz F, Nafees M, Jatoi WN, Malghani NA, Shah AN, Manan A (2021). Silicon mitigates drought stress in wheat (Triticum aestivum L.) through improving photosynthetic pigments, biochemical and yield characters. Silicon 13: 4757-4772. https://doi.org/10.1007/s12633-020-00797-4.
  • Can H (2023). Melatonin application at different doses changes the physiological responses in favor of cabbage seedlings (Brassica oleracea var. capitata) against flooding stress. Gesunde Pflanzen 75: 2733-2745. https://doi.org/10.1007/s10343-023-00873-w.
  • Casey L, Freeman B, Francis K, Brychkova G, McKeown P, Spillane C, Bezrukov A, Zaworotko M, Styles D (2022). Comparative environmental footprints of lettuce supplied by hydroponic controlled-environment agriculture and field-based supply chains. Journal of Cleaner Production 369: 133214. https://doi.org/10.1016/j.jclepro.2022.133214.
  • Chakhchar A, Lamaoui M, Aissam S, Ferradous A, Wahbi S, El Mousadik A, Ibnsouda-Koraichi S, Filali-Maltouf A, El Modafar C (2018). Using chlorophyll fluorescence, photosynthetic enzymes and pigment composition to discriminate drought-tolerant ecotypes of Argania spinosa. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 152: 356-367. https://doi.org/10.1080/11263504.2017.1297334.
  • Chance B, Maehly AC (1955). Assay of catalases and peroxidases. Methods in Enzymology https://doi.org/10.1016/S0076-6879(55)02300-8.
  • Ekinci M, Ors S, Yildirim E, Turan M, Sahin U, Dursun A, Kul R (2020). Determination of physiological indices and some antioxidant enzymes of chard exposed to nitric oxide under drought stress. Russian journal of plant physiology 67: 740-749. https://doi.org/10.1134/S1021443720040056.
  • El-Bauome HA, Doklega SM, Saleh SA, Mohamed AS, Suliman AA, Abd El-Hady MAM (2024). Effects of melatonin on lettuce plant growth, antioxidant enzymes and photosynthetic pigments under salinity stress conditions. Folia Horticulturae 36: 1-17. https://doi.org/10.2478/fhort-2024-0001.
  • Erol UH (2024). Comparison of morphological, biochemical and enzymatic responses of some capsicum species to drought stress during developmental stages. Russian Journal of Plant Physiology 71: 106. https://doi.org/10.1134/S1021443724605895.
  • Faisal M, Faizan M, Soysal S, Alatar AA (2024). Synergistic application of melatonin and silicon oxide nanoparticles modulates reactive oxygen species generation and the antioxidant defense system: a strategy for cadmium tolerance in rice. Frontiers in Plant Science 15: 1484600. https://doi.org/10.3389/fpls.2024.1484600.
  • Fatemi H, Pour BE, Rizwan M (2020). Isolation and characterization of lead (Pb) resistant microbes and their combined use with silicon nanoparticles improved the growth, photosynthesis and antioxidant capacity of coriander (Coriandrum sativum L.) under Pb stress. Environmental Pollution 266: 114982. https://doi.org/10.1016/j.envpol.2020.114982.
  • Haghighi M, Pessarakli M (2013). Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae 161: 111-117. https://doi.org/10.1016/j.scienta.2013.06.034
  • Hameed A, Farooq T, Hameed A, Sheikh MA (2021). Sodium nitroprusside mediated priming memory invokes water-deficit stress acclimation in wheat plants through physio-biochemical alterations. Plant Physiology and Biochemistry 160: 329-340. https://doi.org/10.1016/j.plaphy.2021.01.037.
  • Hassan H, Alatawi A, Abdulmajeed A, Emam M, Khattab H (2021). Roles of Si and SiNPs in improving thermotolerance of wheat photosynthetic machinery via upregulation of PsbH, PsbB and PsbD genes encoding PSII core proteins. Horticulturae 7(2): 16. https://doi.org/10.3390/horticulturae7020016.
  • Hidalgo-Santiago L, Navarro-León E, López-Moreno FJ, Arjó G, González LM, Ruiz JM, Blasco B (2021). The application of the silicon-based biostimulant Codasil® offset water deficit of lettuce plants. Scientia Horticulturae 285: 110177. https://doi.org/10.1016/j.scienta.2021.110177.
  • Kal Ü, Dal Y, Kayak N, Yavuz D, Türkmen Ö, Seymen M (2023). Application of nitrogen for mitigating the adverse effects of flooding stress in lettuce. Journal of Plant Nutrition 46: 4664-4678. https://doi.org/10.1080/01904167.2023.2240831.
  • Kapoor D, Bhardwaj S, Landi M, Sharma A, Ramakrishnan M, Sharma A (2020). The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Applied Sciences 10(16): 5692. https://doi.org/10.3390/app10165692.
  • Khalid MF, Huda S, Yong M, Li L, Li L, Chen ZH, Ahmed T (2023). Alleviation of drought and salt stress in vegetables: crop responses and mitigation strategies. Plant Growth Regulation 99(2): 177-194. https://doi.org/10.1007/s10725-022-00905-x.
  • Khan S, Basit A, Hafeez MB, Irshad S, Bashir S, Bashir S, Maqbool MM, Saddiq MS, Hasnain Z, Aljuaid BS, El-Shehawi AM, Li Y (2021). Moringa leaf extract improves biochemical attributes, yield and grain quality of rice (Oryza sativa L.) under drought stress. Plos one 16(7): e0254452. https://doi.org/10.1371/journal.pone.0254452.
  • Kiremit MS, Akınoğlu G, Mitrovica B, Rakıcıoğlu S (2024). Enhancing drought-salinity stress tolerance in lettuce: Synergistic effects of salicylic acid and melatonin. South African Journal of Botany 172: 212-226. https://doi.org/10.1016/j.sajb.2024.07.021.
  • Kleiber T, Chadzinikolau T, Formela-Luboińska M, Lartey JL, Kosiada T (2024). Enhancing lettuce drought tolerance: The role of organic acids in photosynthesis and oxidative defense. Applied Sciences 14(12): 5119. https://doi.org/10.3390/app14125119.
  • Korkmaz N, Aşkın MA, Altunlu H, Polat M, Okatan V, Kahramanoğlu İ (2022). The effects of melatonin application on the drought stress of different citrus rootstocks. Turkish Journal of Agriculture and Forestry 46(4): 585-600. https://doi.org/10.55730/1300-011X.3027
  • Leitão I, Leclercq CC, Ribeiro DM, Renaut J, Almeida AM, Martins LL, Mourato MP (2021). Stress response of lettuce (Lactuca sativa) to environmental contamination with selected pharmaceuticals: A proteomic study. Journal of Proteomics 245: 104291. https://doi.org/10.1016/j.jprot.2021.104291.
  • Lemos Neto HdS, de Almeida Guimarães M, Mesquita RO, Sousa Freitas WE, de Oliveira AB, da Silva Dias N, Gomes-Filho E (2021). Silicon supplementation induces physiological and biochemical changes that assist lettuce salinity tolerance. Silicon 13: 4075-4089. https://doi.org/10.1007/s12633-020-00715-8.
  • Li J, Abbas K, Wang L, Gong B, Hou S, Wang W, Dai B, Xia H, Wu X, Lü G, Gao H (2023). Drought resistance index screening and evaluation of lettuce under water deficit conditions on the basis of morphological and physiological differences. Frontiers in Plant Science 14. https://doi.org/10.3389/fpls.2023.1228084.
  • Liang D, Ni Z, Xia H, Xie Y, Lv X, Wang J, Lin L, Deng Q, Luo X (2019). Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Scientia Horticulturae 246: 34-43. https://doi.org/10.1016/j.scienta.2018.10.058.
  • Lichtenthaler HK, Buschmann C (2001). Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current Protocols in Food Analytical Chemistry 1(1): F4-3. https://doi.org/10.1002/0471142913.faf0403s01.
  • Mampholo BM, Maboko MM, Soundy P, Sivakumar D (2016). Phytochemicals and overall quality of leafy lettuce (Lactuca sativa L.) varieties grown in closed hydroponic system. Journal of Food Quality 39(6): 805-815. https://doi.org/10.1111/jfq.12234.
  • Markovich O, Zexer N, Negin B, Zait Y, Blum S, Ben-Gal A, RivkaElbaum R (2022). Low Si combined with drought causes reduced transpiration in sorghum Lsi1 mutant. Plant and Soil 477: 57-67. https://doi.org/10.1007/s11104-022-05298-4.
  • Martínez MG, Floquet P, Dupont C, da Silva Perez D,Meyer X M (2020). Assessing the impact of woody and agricultural biomass variability on its behaviour in torrefaction through Principal Component Analysis. Biomass and Bioenergy 134, 105474. https://doi.org/10.1016/j.biombioe.2020.105474.
  • Maslova TG, Markovskaya EF, Slemnev NN (2021). Functions of carotenoids in leaves of higher plants (Review). Biology Bulletin Reviews 11: 476-487. https://doi.org/10.1134/S2079086421050078.
  • Mathews PG (2004). Design of experiments with MINITAB. Quality press.
  • Mavrič Čermelj A, Golob A, Vogel-Mikuš K, Germ M (2021). Silicon mitigates negative impacts of drought and UV-b radiation in plants. Plants 11(1): 91. https://doi.org/10.3390/plants11010091.
  • Michelon N, Pennisi G, Myint NO, Dall’Olio G, Batista LP, Salviano AAC, Gruda NS, Orsini F, Gianquinto G (2020). Strategies for improved yield and water use efficiency of lettuce (Lactuca sativa L.) through simplified soilless cultivation under semi-arid climate. Agronomy 10(9): 1379. https://doi.org/10.3390/agronomy10091379.
  • Niu S, Luo Y, Li D, Cao S, Xia J, Li J, Smith MD (2014). Plant growth and mortality under climatic extremes: an overview. Environmental and Experimental Botany 98: 13-19. https://doi.org-/10.1016/j.envexpbot.2013.10.004.
  • Ors S, Ekinci M, Yildirim E, Sahin U, Turan M, Dursun A (2021). Interactive effects of salinity and drought stress on photosynthetic characteristics and physiology of tomato (Lycopersicon esculentum L.) seedlings. South African Journal of Botany 137: 335-339. https://doi.org/10.1016/j.sajb.2020.10.031.
  • Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010). Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. Journal of Plant Growth Regulation 29: 106–115 (2010). https://link.springer.com/article/10.1007/s00344-009-9120-9.
  • Ramadan KM, El-Beltagi HS, Makhlouf BSI, Khalil SRAE, Al-Daej MI, Shalaby TA, Bendary ES, Saudy HS (2024). Carboxymethyl chitosan improves sugar beet tolerance to drought by controlling enzyme activity and stomatal conductance. Polish Journal of Environmental Studies 34 (1): 791-800.
  • Razi K, Muneer S (2021). Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Critical Reviews in Biotechnology 41: 669-691. https://doi.org/10.1080/07388551.2021.1874280.
  • Ren J, Yang X, Ma C, Wang Y, Zhao J (2021). Melatonin enhances drought stress tolerance in maize through coordinated regulation of carbon and nitrogen assimilation. Plant Physiology and Biochemistry 167: 958-969. https://doi.org/10.1016/j.plaphy.2021.09.007.
  • Şalk A, Arın L, Deveci M, Polat S (2008). Özel sebzecilik. Namık Kemal Üniversitesi Ziraat Fakültesi pp 448.
  • Sattar A, Sher A, Ijaz M, Ul-Allah S, Hussain S, Rasheed U, Hussain J, Al-Qahtani SM, Al-Harbi NA, Mahmoud SF, Ibrahim MFM (2023). Modulation of antioxidant defense mechanisms and morpho-physiological attributes of wheat through exogenous application of silicon and melatonin under water deficit conditions. Sustainability 15(9): 7426. https://doi.org/10.3390/su15097426.
  • Seymen M, Alkhateb R, Mutlu A, Yavuz D (2024a). Do exogenous melatonin and nitric oxide mitigate the adverse effects of flooding stress in spinach? Scientia Horticulturae 330: 113081. https://doi.org/10.1016/j.scienta.2024.113081.
  • Seymen M, Erçetin M, Yavuz D, Kıymacı G, Kayak N, Mutlu A, Kurtar ES (2024b). Agronomic and physio-biochemical responses to exogenous nitric oxide (NO) application in cauliflower under water stress conditions. Scientia Horticulturae 331: 113116. https://doi.org/10.1016/j.scienta.2024.113116.
  • Seymen M, Yavuz D, Can H, Kıymacı G, Türkmen Ö, Paksoy M, Yavuz N, Kayak N, Kurtar ES (2024). Molecular and physiological responses to exogenously applied melatonin in spinach under deficit irrigation conditions. Journal of Plant Growth Regulation 43(6): 1858-1874. https://doi.org/10.1007/s00344-023-11226-2.
  • Shaffique S, Khan MA, Imran M, Kang SM, Park YS, Wani SH, Lee IJ (2022). Research progress in the field of microbial mitigation of drought stress in plants. Frontiers in Plant Science 13: 870626. https://doi.org/10.3389/fpls.2022.870626.
  • Shaffique S, Shah AA, Kang SM, Injamum-Ul-Hoque M, Shahzad R, Azzawi TNIA, Yun BW, Lee IJ (2024). Melatonin: dual players mitigating drought-induced stress in tomatoes via modulation of phytohormones and antioxidant signaling cascades. BMC Plant Biology 24: 1101. https://doi.org/10.1186/s12870-024-05752-8
  • Shin YK, Bhandari SR, Jo JS, Song JW, Lee JG (2021). Effect of drought stress on chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities in lettuce seedlings. Horticulturae 7(8): 238. https://doi.org/10.3390/horticulturae7080238.
  • Sun H, Jia M, Wang Y, Lu H, Wang X (2023). The complexity of melatonin and other phytohormones crosstalk with other signaling molecules for drought tolerance in horticultural crops. Scientia Horticulturae 321: 112348. https://doi.org/10.1016/j.scienta.2023.112348.
  • Tiwari RK, Lal MK, Kumar R, Chourasia KN, Naga KC, Kumar D, Das SK, Zinta G (2021). Mechanistic insights on melatonin‐mediated drought stress mitigation in plants. Physiologia Plantarum 172(2): 1212-1226. https://doi.org/10.1111/ppl.13307.
  • Tufail B, Ashraf K, Abbasi A, Ali HM, Sultan K, Munir T, Khan MT, uz Zaman Q (2023). Effect of selenium on growth, physio-biochemical and yield traits of lettuce under limited water regimes. Sustainability 15(8): 6804. https://doi.org/10.3390/su15086804.
  • TÜİK (2023). Bitkisel Üretim İstatistikleri. https://www.tuik.gov.tr/ (access date:01.06.2024).
  • Ünlükara A, Cemek B, Karaman S, Erşahin S (2008). Response of lettuce (Lactuca sativa var. crispa) to salinity of irrigation water. New Zealand Journal of Crop and Horticultural Science 36(4): 265-273. https://doi.org/10.1080/01140670809510243.
  • Urbutis M, Laužikė K, Samuolienė G (2023). Exogenous phytohormones: effects on lettuce photosynthesis, antioxidant response and growth. Horticulturae 9(7): 792. https://doi.org/10.3390/horticulturae9070792.
  • Velikova V, Yordanov I, Edreva A (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science 151: 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1.
  • Villa e Vila V, Marques PAA, Gomes TM, Nunes AF, Montenegro VG, Wenneck GS, Franco LB (2024). Deficit irrigation with silicon application as strategy to increase yield, photosynthesis and water productivity in lettuce crops. Plants 13(7): 1029. https://doi.org/10.3390/plants13071029.
  • Wahab A, Abdi G, Saleem MH, Ali B, Ullah S, Shah W, Mumtaz S, Yasin G, Muresan CC, Marc RA (2022). Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants 11(13): 1620. https://doi.org/10.3390/plants11131620.
  • Witham FH, Blaydes DF, Devlin RM (1971). Experiments in plant physiology. Wageningen University and Research Library catalog.
  • Zhang H, Zhu J, Gong Z, Zhu JK (2022). Abiotic stress responses in plants. Nature Reviews Genetics 23(2): 104-119. https://doi.org/10.1038/s41576-021-00413-0.
  • Zhang X, Wei S, Sun Q, Wadood SA, Guo B (2018). Source identification and spatial distribution of arsenic and heavy metals in agricultural soil around Hunan industrial estate by positive matrix factorization model, principle components analysis and geo statistical analysis. Ecotoxicology and Environmental Safety 159: 354-362. https://doi.org/10.1016/j.ecoenv.2018.04.072.
  • Zhang Y, Yu SHI, Gong HJ, Zhao HL, Li HL, Hu YH, Wang YC (2018). Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. Journal of Integrative Agriculture 17(10): 2151-2159. https://doi.org/10.1016/S2095-3119(18)62038-6.
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sebze Yetiştirme ve Islahı
Bölüm Araştırma Makalesi
Yazarlar

Hasan Can 0000-0002-3276-0106

Proje Numarası Yok
Erken Görünüm Tarihi 7 Ağustos 2025
Yayımlanma Tarihi
Gönderilme Tarihi 2 Ocak 2025
Kabul Tarihi 25 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 39 Sayı: 2

Kaynak Göster

EndNote Can H (01 Ağustos 2025) Potential of Silicon and Melatonin Amendments to Enhance the Tolerance of Lettuce Plants to Water Deficit Stress. Selcuk Journal of Agriculture and Food Sciences 39 2 280–296.

Selcuk Journal of Agriculture and Food Sciences Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır.