Araştırma Makalesi
BibTex RIS Kaynak Göster

Interactive Effects of Water Salinity and Water-Deficit on Biochemical Content and Photosynthetic Activity of Melon (Cucumis melo L.) Seedlings

Yıl 2025, Cilt: 39 Sayı: 2, 320 - 333

Öz

The deleterious effects of abiotic stress factors, which have emerged in the context of global climate change, have a detrimental impact on agricultural production. Irregularity in seasonal rainfall and high temperatures make it difficult to meet the water needs of the plant. In addition, intensive fertilization, monoculture and use of poor-quality water in irrigation in vegetable fields cause salinity problems. It has been observed that both stress factors cause yield and quality losses in vegetable farming. For this purpose, in the present study, five different salt (NaCl-S) levels {control S1 (mains water=500 µmhos), S2 (2000 µmhos), S3 (4000 µmhos), S4 (6000 µmhos) and S5 (8000 µmhos)} and three different irrigation water levels (full irrigation-I100, 75% irrigation-I75 and 50% irrigation-I50) were applied to melon seedlings in the study and their effects on photosynthetic activity and biochemical changes were tried to be determined. The study revealed that elevated levels of both stress factors resulted in a reduction in the growth of melon seedlings. Conversely, the findings indicated that superoxide dismutase (SOD) enzyme activity served as a significant indicator under both stress factor conditions. Furthermore, an increase in SOD activity was observed as stress levels escalated. In addition, it was seen that saline waters higher than 4000 µmhos would have a toxic effect on melon seedlings. It is important for the sustainability of melon farming that 25% water restriction can be applied in regions where irrigation water is limited.

Kaynakça

  • Abdel-Farid I, Marghany M, Rowezek M, Sheded M (2020). Effect of salinity stress on growth and metabolomic profiling of Cucumis sativus and Solanum lycopersicum. Plants 9(11), 1626. https://doi.org/10.3390/plants9111626.
  • Akram W, Aslam H, Ahmad S, Anjum T, Yasin N, Khan W, Ahmad A, Guo J, Wu T, Luo W, Li G (2019). bacillus megaterium strain a12 ameliorates salinity stress in tomato plants through multiple mechanisms. Journal of Plant Interactions 14(1), 506-518. https://doi.org/10.1080/17429145-.2019.1662497.
  • Alam H, Khattak J, Ksiksi T, Saleem M, Fahad S, Sohail H, Ali Q, Zamin M, El-Sawai M, Saud S, Jiang X, Alwahibi M, Alkahtani J (2020). Negative impact of long‐term exposure of salinity and drought stress on native tetraena mandavillei L. Physiologia Plantarum 172(2), 1336-1351. https://doi.org/10.1111/ppl.13273.
  • Ali B, Wang X, Saleem M, Hafeez A, Afridi M, Khan S, Un Nisa Z, Ullah I, Amaral Júnior ATD, Alatavi A, Ali S. (2022). Pgpr-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes. Plants 11(3), 345. https://doi.org/10.3390/plants11030345.
  • Anjum SA, Xie X, Wang L, Saleem MF, Man C, Lei W (2011). Morphological, physiological and biochemical responses of plants to drought stres. African Journal of Agricultural Research 6, 2026-2032.
  • Ansari W, Atri N, Ahmad J, Qureshi M, Singh B, Kumar R, Rai V, Pandey S (2019). Drought mediated physiological and molecular changes in muskmelon (Cucumis melo L.). Plos One 14(9), e0222647. https://doi.org/10.1371/journal.pone.0222647.
  • Bergmayer H (1983). UV method of catalase assay. Methods of Enzymatic Analysis 3, 273.
  • Beyer Jr WF, Fridovich I (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry 161(2), 559-566.
  • Blum A (1985). Breeding crop varieties for stres environments. Critical Reviews in Plant Sciences 2, 199-238.
  • Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72(1-2): 248-254.
  • Bray EA (1997), Plant Responses to Water Deficit. Trends Plant Science 2, 48-54.
  • Chevilly S, Dolz‐Edo L, Martínez-Sánchez G, Morcillo L, Vilagrosa A, López‐Nicolás J, Blanca J, Yenush L, Mulet, J. (2021). Distinctive traits for drought and salt stress tolerance in melon (Cucumis melo L.). Frontiers in Plant Science 12. https://doi.org/10.3389/fpls.2021.777060.
  • Cumhur A, Malcolm SC (2008). The effects of global climate change on agriculture. American-Eurasian Journal of Agricultural and Environmental Sciences 3(5), 672-676.
  • Çelik MÖ, Yakar M, (2024). Mersin’in farklı kuraklık i̇ndeksleri aracılığıyla kuraklık tehdidinin araştırılması. Afyon Kocatepe University Journal of Sciences and Engineering 24(1), 71-84. https://doi.org/10.35414/-akufemubid.1331753.
  • Esterbauer H, Cheeseman KH (1990). Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. In Methods in enzymology Academic Press 186: 407-421.
  • FAO (2023). Crops and livestock products https://www.fao.org/faostat/en/#data/QCL (access date: 25.09.20024).
  • Fileccia V, Ruisi P, Ingraffia R, Giambalvo D, Frenda A, Martinelli F (2017). Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat. Plos One 12(9), e0184158. https://doi.org/10.1371/journal.pone.0184158.
  • Gao S, Wang Y, Yu S, Huang Y, Liu H, Chen W, He X. (2020). Effects of drought stress on growth, physiology and secondary metabolites of Two Adonis species in Northeast China. Scientia Horticulturae 259, 108795.
  • Hameed A, Ahmed M, Hussain T, Aziz I, Ahmad N, Gul B, Nielsen B (2021). Effects of salinity stress on chloroplast structure and function. Cells 10(8), 2023. https://doi.org/10.3390/cells10082023
  • Hanif S, Saleem MF, Sarwar M, Irshad M, Shakoor A, Wahid MA, Khan HZ (2021). Biochemically triggered heat and drought stress tolerance in rice by proline application. Journal of Plant Growth Regulation 40(1), 305-312.
  • Havir EA, McHale NA (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology 84(2), 450-455.
  • Hirayama T, Shinozaki K (2010). Research on plant abiotic stress responses in the post‐genome era: past, present and future. The Plant Journal 61(6), 1041-1052.
  • Ibrahim M, Zhu X, Zhou G, Ali A, Ahmad I, Elsiddig, Zhu G, A, Nimir, N. (2019). Promoting salt tolerance in wheat seedlings by application of nitrogen fertilizer. Pakistan Journal of Botany 51(6), https://doi.org/10.30848/pjb2019-6(29).
  • Kaçar B (2015). Genel Bitki Fizyolojisi. Nobel Akademik Yayıncılık: Yayın No: 1243, Ankara.
  • Kalefetoğlu T, Ekmekçi Y (2005). The Effect of Drought on Plants and Tolerance Mechanisms. G. U. Journal of Science 18(4), 723- 740.
  • Kayak N, Kal Ü, Dal Y, Yavuz D, Seymen M (2023). Do proline and glycine betaine mitigate the adverse effects of water stress in spinach? Gesunde Pflanzen 75(1), 97-113.
  • Kayak N (2024). The effect on morpho-physiological and biochemical characteristics of cauliflower and cabbage harvested at different times under flooding stress conditions. Journal of Crop Health 76(1), 145-159.
  • Khedr AHA, Abbas MA, Wahid AAA, Quick WP, Abogadallah GM (2003). Proline induces the expression of salt‐stress‐responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt‐stress. Journal of Experimental Botany 54(392), 2553-2562.
  • Kireççi OA (2018). Enzymatic and non-enzymatic antioxidants in plants. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 7(2), 473-483.
  • Kurtar ES, Seymen M, Yavuz D, Acar B, Metin D, Atakul Z, Kal Ü. (2024). Morphophysiological and biochemical investigation of the potential of citron watermelon (Citrullus lanatus var. citroides) rootstock under different irrigation regimes. Horticulture, Environment, and Biotechnology 1-15.
  • Kuşvuran Ş (2012). Effects of drought and salt stresses on growth, stomatal conductance, leaf water and osmotic potentials of melon genotypes (Cucumis melo L.). African Journal of Agricultural Research 7(5). https://doi.org/10.5897/ajar11.1783
  • Kuşvuran Ş, Daşgan H, Abak K (2013). Citrulline is an important biochemical indicator in tolerance to saline and drought stresses in melon. The Scientific World Journal 2013(1) https://doi.org/10.1155/2013/253414
  • Latowski D, Kuczyńska P, Strzałka K (2011). Xanthophyll cycle–a mechanism protecting plants against oxidative stress. Redox Report 16(2), 78-90.
  • Liang D, Ni Z, Xia H, Xie Y, Lv X, Wang J, Lin L, Deng Q, Luo X (2019). Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Scientia Horticulturae 246, 34-43. https://doi.org/10.1016/j.scienta.2018.10.058.
  • Lichtenthaler HK (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology 148: pp. 350-382). Academic Press 6879(87), 48036-1.
  • Nayar H, Kaushal SK (2002). Chilling induced oxidative stress in germinating wheat grains as affected by water stress and calcium. Biology Plant 45, 601-604.
  • Omidi M, Khandan‐Mirkohi A, Kafi M, Zamani Z, Ajdanian L, Babaei M (2022). Biochemical and molecular responses of rosa damascena mill. cv. kashan to salicylic acid under salinity stress. BMC Plant Biology 22(1). https://doi.org/10.1186/s12870-022-03754-
  • Öztürk N Z (2015). Bitkilerin kuraklık stresine tepkilerinde bilinenler ve yeni yaklaşımlar. Turkish Journal Of Agriculture-Food Science And Technology 3(5), 307-315.
  • Pereira F, Medeiros J, Gheyi H, Dias N, Preston W, Vasconcelos C (2017). Tolerance of melon cultivars to irrigation water salinity. Revista Brasileira De Engenharia Agrícola E Ambiental 21(12), 846-851. https://doi.org/10.1590/1807-1929/agriambi.v21n12p846-851.
  • Riasat M, Kiani S, Saed-Mouchehsi A, Pessarakli M (2019). Oxidant related biochemical traits are significant indices in triticale grain yield under drought stress condition. Journal of Plant Nutrition 42(2), 111-126.
  • Sağlam A (2004). Ağır kuraklık stresi geçirmiş Ctenanthe setosa bitkisinin yeni kuraklık koşullarına adaptasyon yeteneğinin araştırılması. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, Trabzon.
  • Salunkhe DK, Kadam S (1998). Handbook of vegetable science and technology: Production, Composition, Storage and Processing, CRC press.
  • Sattar A, Sher A, Ijaz M, Ul-Allah S, Rizwan MS, Hussain M, Jabrab K, Cheema, M. A. (2020). Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat. PLoS One 15(5), e0232974.
  • Savvides A, Ali S, Tester M, Fotopoulos V (2016). Chemical priming of plants against multiple abiotic stresses: mission possible? Trends in plant science 21(4), 329-340.
  • Seymen M (2021). Comparative analysis of the relationship between morphological, physiological, and biochemical properties in spinach (Spinacea oleracea L.) under deficit irrigation conditions. Turkish Journal of Agriculture and Forestry 45(1), 55-67.
  • Seymen M, Erçetin M, Yavuz D, Kıymacı G, Kayak N, Mutlu A, Kurtar E S (2024). Agronomic and physio-biochemical responses to exogenous nitric oxide (NO) application in cauliflower under water stress conditions. Scientia Horticulturae 331, 113116.
  • Seymen M, Yavuz D, Eroğlu S, Arı BÇ, Tanrıverdi ÖB, Atakul Z, Issı N (2023). Effects of different levels of water salinity on plant growth, biochemical content, and photosynthetic activity in cabbage seedling under water-deficit conditions. Gesunde Pflanzen 75(4), 871-884.
  • Sminroff N (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytology 125, 27-58.
  • Sobhani A, Mohammadzadeh A (2017). The effect of saline water on quantitative and qulaitive charactristics of melon genotypes. Journal of BioScience and Biotechnology 6(2), 83-90.
  • Sousa V, Costa C, Diniz G, Santos J, Bomfim M (2018). Physiological behavior of melon cultivars submitted to soil salinity1. Pesquisa Agropecuária Tropical 48(3), 271-279. https://doi.org/10.1590/1983-40632018v4852495.
  • TÜİK (2023). https://biruni.tuik.gov.tr/medas/?locale=tr. (access date: 25.09.20024).
  • Van Breusegem F, Vranová E, Dat JF, Inzé D (2001). The role of active oxygen species in plant signal transduction. Plant science 161(3), 405-414.
  • Wien H (1997) The cucurbits: Cucumber, melon, squash and pumpkin. Health-promoting properties of fruitand vegetables, 118-134
  • Yavuz D, Gökmen Yılmaz F, Seymen M, Korkmaz A, Baştaş KK (2024). Effects of newly isolated rhizobacteria on the physiological characteristics and nutrient uptake of watermelon plants grafted onto different rootstocks under water stress. Journal of Crop Health 76(4), 865-881.
  • Yavuz D, Kılıç E, Seymen M, Dal Y, Kayak N, Kal Ü, Yavuz N (2022). The effect of irrigation water salinity on the morph-physiological and biochemical properties of spinach under deficit irrigation conditions. Scientia Horticulturae 304, 111272.
  • Yavuz D, Seymen M, Kal Ü, Atakul Z, Tanrıverdi ÖB, Türkmen Ö, Yavuz N (2023). Agronomic and physio-biochemical responses of lettuce to exogenous sodium nitroprusside (SNP) applied under different irrigation regimes. Agricultural Water Management 277, 108127.

Su tuzluluğu ve su eksikliğinin kavun (Cucumis melo L.) fidelerinin biyokimyasal içeriği ve fotosentetik aktivitesi üzerindeki etkileşimli etkileri

Yıl 2025, Cilt: 39 Sayı: 2, 320 - 333

Öz

Küresel iklim değişikliği bağlamında ortaya çıkan abiyotik stres faktörlerinin zararlı etkileri tarımsal üretim üzerinde olumsuz etki yaratmaktadır. Mevsimsel yağışlardaki düzensizlik ve yüksek sıcaklıklar bitkinin su ihtiyacının karşılanmasını zorlaştırmaktadır. Ayrıca sebze tarlalarında yoğun gübreleme, monokültür ve sulamada kalitesiz su kullanımı tuzluluk sorunlarına yol açmaktadır. Her iki stres faktörünün de sebze yetiştiriciliğinde verim ve kalite kayıplarına yol açtığı görülmüştür. Bu amaçla, bu çalışmada kavun fidelerine beş farklı tuz (NaCl-S) seviyesi {kontrol S1 (şebeke suyu=500 µmhos), S2 (2000 µmhos), S3 (4000 µmhos), S4 (6000 µmhos) ve S5 (8000 µmhos)} ve üç farklı sulama suyu seviyesi (tam sulama-I100, %75 sulama-I75 ve %50 sulama-I50) uygulanarak fotosentetik aktivite ve biyokimyasal değişimler üzerine etkileri belirlenmeye çalışılmıştır. Çalışma, her iki stres faktörünün de artan seviyelerinin kavun fidelerinin büyümesinde bir azalmaya neden olduğunu ortaya koymuştur. Diğer yandan, bulgular süperoksit dismutaz (SOD) enzim aktivitesinin her iki stres faktörü koşulunda da önemli bir gösterge olarak görev yaptığını göstermiştir. Ayrıca, stres seviyeleri arttıkça SOD aktivitesinde bir artış gözlenmiştir. Ayrıca 4000 µmhos'tan yüksek tuzlu suların kavun fideleri üzerinde toksik etki yaratacağı görülmüştür. Sulama suyunun kısıtlı olduğu bölgelerde %25 su kısıtlaması uygulanabilmesi kavun yetiştiriciliğinin sürdürülebilirliği açısından önemlidir.

Kaynakça

  • Abdel-Farid I, Marghany M, Rowezek M, Sheded M (2020). Effect of salinity stress on growth and metabolomic profiling of Cucumis sativus and Solanum lycopersicum. Plants 9(11), 1626. https://doi.org/10.3390/plants9111626.
  • Akram W, Aslam H, Ahmad S, Anjum T, Yasin N, Khan W, Ahmad A, Guo J, Wu T, Luo W, Li G (2019). bacillus megaterium strain a12 ameliorates salinity stress in tomato plants through multiple mechanisms. Journal of Plant Interactions 14(1), 506-518. https://doi.org/10.1080/17429145-.2019.1662497.
  • Alam H, Khattak J, Ksiksi T, Saleem M, Fahad S, Sohail H, Ali Q, Zamin M, El-Sawai M, Saud S, Jiang X, Alwahibi M, Alkahtani J (2020). Negative impact of long‐term exposure of salinity and drought stress on native tetraena mandavillei L. Physiologia Plantarum 172(2), 1336-1351. https://doi.org/10.1111/ppl.13273.
  • Ali B, Wang X, Saleem M, Hafeez A, Afridi M, Khan S, Un Nisa Z, Ullah I, Amaral Júnior ATD, Alatavi A, Ali S. (2022). Pgpr-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes. Plants 11(3), 345. https://doi.org/10.3390/plants11030345.
  • Anjum SA, Xie X, Wang L, Saleem MF, Man C, Lei W (2011). Morphological, physiological and biochemical responses of plants to drought stres. African Journal of Agricultural Research 6, 2026-2032.
  • Ansari W, Atri N, Ahmad J, Qureshi M, Singh B, Kumar R, Rai V, Pandey S (2019). Drought mediated physiological and molecular changes in muskmelon (Cucumis melo L.). Plos One 14(9), e0222647. https://doi.org/10.1371/journal.pone.0222647.
  • Bergmayer H (1983). UV method of catalase assay. Methods of Enzymatic Analysis 3, 273.
  • Beyer Jr WF, Fridovich I (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry 161(2), 559-566.
  • Blum A (1985). Breeding crop varieties for stres environments. Critical Reviews in Plant Sciences 2, 199-238.
  • Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72(1-2): 248-254.
  • Bray EA (1997), Plant Responses to Water Deficit. Trends Plant Science 2, 48-54.
  • Chevilly S, Dolz‐Edo L, Martínez-Sánchez G, Morcillo L, Vilagrosa A, López‐Nicolás J, Blanca J, Yenush L, Mulet, J. (2021). Distinctive traits for drought and salt stress tolerance in melon (Cucumis melo L.). Frontiers in Plant Science 12. https://doi.org/10.3389/fpls.2021.777060.
  • Cumhur A, Malcolm SC (2008). The effects of global climate change on agriculture. American-Eurasian Journal of Agricultural and Environmental Sciences 3(5), 672-676.
  • Çelik MÖ, Yakar M, (2024). Mersin’in farklı kuraklık i̇ndeksleri aracılığıyla kuraklık tehdidinin araştırılması. Afyon Kocatepe University Journal of Sciences and Engineering 24(1), 71-84. https://doi.org/10.35414/-akufemubid.1331753.
  • Esterbauer H, Cheeseman KH (1990). Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. In Methods in enzymology Academic Press 186: 407-421.
  • FAO (2023). Crops and livestock products https://www.fao.org/faostat/en/#data/QCL (access date: 25.09.20024).
  • Fileccia V, Ruisi P, Ingraffia R, Giambalvo D, Frenda A, Martinelli F (2017). Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat. Plos One 12(9), e0184158. https://doi.org/10.1371/journal.pone.0184158.
  • Gao S, Wang Y, Yu S, Huang Y, Liu H, Chen W, He X. (2020). Effects of drought stress on growth, physiology and secondary metabolites of Two Adonis species in Northeast China. Scientia Horticulturae 259, 108795.
  • Hameed A, Ahmed M, Hussain T, Aziz I, Ahmad N, Gul B, Nielsen B (2021). Effects of salinity stress on chloroplast structure and function. Cells 10(8), 2023. https://doi.org/10.3390/cells10082023
  • Hanif S, Saleem MF, Sarwar M, Irshad M, Shakoor A, Wahid MA, Khan HZ (2021). Biochemically triggered heat and drought stress tolerance in rice by proline application. Journal of Plant Growth Regulation 40(1), 305-312.
  • Havir EA, McHale NA (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology 84(2), 450-455.
  • Hirayama T, Shinozaki K (2010). Research on plant abiotic stress responses in the post‐genome era: past, present and future. The Plant Journal 61(6), 1041-1052.
  • Ibrahim M, Zhu X, Zhou G, Ali A, Ahmad I, Elsiddig, Zhu G, A, Nimir, N. (2019). Promoting salt tolerance in wheat seedlings by application of nitrogen fertilizer. Pakistan Journal of Botany 51(6), https://doi.org/10.30848/pjb2019-6(29).
  • Kaçar B (2015). Genel Bitki Fizyolojisi. Nobel Akademik Yayıncılık: Yayın No: 1243, Ankara.
  • Kalefetoğlu T, Ekmekçi Y (2005). The Effect of Drought on Plants and Tolerance Mechanisms. G. U. Journal of Science 18(4), 723- 740.
  • Kayak N, Kal Ü, Dal Y, Yavuz D, Seymen M (2023). Do proline and glycine betaine mitigate the adverse effects of water stress in spinach? Gesunde Pflanzen 75(1), 97-113.
  • Kayak N (2024). The effect on morpho-physiological and biochemical characteristics of cauliflower and cabbage harvested at different times under flooding stress conditions. Journal of Crop Health 76(1), 145-159.
  • Khedr AHA, Abbas MA, Wahid AAA, Quick WP, Abogadallah GM (2003). Proline induces the expression of salt‐stress‐responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt‐stress. Journal of Experimental Botany 54(392), 2553-2562.
  • Kireççi OA (2018). Enzymatic and non-enzymatic antioxidants in plants. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 7(2), 473-483.
  • Kurtar ES, Seymen M, Yavuz D, Acar B, Metin D, Atakul Z, Kal Ü. (2024). Morphophysiological and biochemical investigation of the potential of citron watermelon (Citrullus lanatus var. citroides) rootstock under different irrigation regimes. Horticulture, Environment, and Biotechnology 1-15.
  • Kuşvuran Ş (2012). Effects of drought and salt stresses on growth, stomatal conductance, leaf water and osmotic potentials of melon genotypes (Cucumis melo L.). African Journal of Agricultural Research 7(5). https://doi.org/10.5897/ajar11.1783
  • Kuşvuran Ş, Daşgan H, Abak K (2013). Citrulline is an important biochemical indicator in tolerance to saline and drought stresses in melon. The Scientific World Journal 2013(1) https://doi.org/10.1155/2013/253414
  • Latowski D, Kuczyńska P, Strzałka K (2011). Xanthophyll cycle–a mechanism protecting plants against oxidative stress. Redox Report 16(2), 78-90.
  • Liang D, Ni Z, Xia H, Xie Y, Lv X, Wang J, Lin L, Deng Q, Luo X (2019). Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Scientia Horticulturae 246, 34-43. https://doi.org/10.1016/j.scienta.2018.10.058.
  • Lichtenthaler HK (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology 148: pp. 350-382). Academic Press 6879(87), 48036-1.
  • Nayar H, Kaushal SK (2002). Chilling induced oxidative stress in germinating wheat grains as affected by water stress and calcium. Biology Plant 45, 601-604.
  • Omidi M, Khandan‐Mirkohi A, Kafi M, Zamani Z, Ajdanian L, Babaei M (2022). Biochemical and molecular responses of rosa damascena mill. cv. kashan to salicylic acid under salinity stress. BMC Plant Biology 22(1). https://doi.org/10.1186/s12870-022-03754-
  • Öztürk N Z (2015). Bitkilerin kuraklık stresine tepkilerinde bilinenler ve yeni yaklaşımlar. Turkish Journal Of Agriculture-Food Science And Technology 3(5), 307-315.
  • Pereira F, Medeiros J, Gheyi H, Dias N, Preston W, Vasconcelos C (2017). Tolerance of melon cultivars to irrigation water salinity. Revista Brasileira De Engenharia Agrícola E Ambiental 21(12), 846-851. https://doi.org/10.1590/1807-1929/agriambi.v21n12p846-851.
  • Riasat M, Kiani S, Saed-Mouchehsi A, Pessarakli M (2019). Oxidant related biochemical traits are significant indices in triticale grain yield under drought stress condition. Journal of Plant Nutrition 42(2), 111-126.
  • Sağlam A (2004). Ağır kuraklık stresi geçirmiş Ctenanthe setosa bitkisinin yeni kuraklık koşullarına adaptasyon yeteneğinin araştırılması. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, Trabzon.
  • Salunkhe DK, Kadam S (1998). Handbook of vegetable science and technology: Production, Composition, Storage and Processing, CRC press.
  • Sattar A, Sher A, Ijaz M, Ul-Allah S, Rizwan MS, Hussain M, Jabrab K, Cheema, M. A. (2020). Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat. PLoS One 15(5), e0232974.
  • Savvides A, Ali S, Tester M, Fotopoulos V (2016). Chemical priming of plants against multiple abiotic stresses: mission possible? Trends in plant science 21(4), 329-340.
  • Seymen M (2021). Comparative analysis of the relationship between morphological, physiological, and biochemical properties in spinach (Spinacea oleracea L.) under deficit irrigation conditions. Turkish Journal of Agriculture and Forestry 45(1), 55-67.
  • Seymen M, Erçetin M, Yavuz D, Kıymacı G, Kayak N, Mutlu A, Kurtar E S (2024). Agronomic and physio-biochemical responses to exogenous nitric oxide (NO) application in cauliflower under water stress conditions. Scientia Horticulturae 331, 113116.
  • Seymen M, Yavuz D, Eroğlu S, Arı BÇ, Tanrıverdi ÖB, Atakul Z, Issı N (2023). Effects of different levels of water salinity on plant growth, biochemical content, and photosynthetic activity in cabbage seedling under water-deficit conditions. Gesunde Pflanzen 75(4), 871-884.
  • Sminroff N (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytology 125, 27-58.
  • Sobhani A, Mohammadzadeh A (2017). The effect of saline water on quantitative and qulaitive charactristics of melon genotypes. Journal of BioScience and Biotechnology 6(2), 83-90.
  • Sousa V, Costa C, Diniz G, Santos J, Bomfim M (2018). Physiological behavior of melon cultivars submitted to soil salinity1. Pesquisa Agropecuária Tropical 48(3), 271-279. https://doi.org/10.1590/1983-40632018v4852495.
  • TÜİK (2023). https://biruni.tuik.gov.tr/medas/?locale=tr. (access date: 25.09.20024).
  • Van Breusegem F, Vranová E, Dat JF, Inzé D (2001). The role of active oxygen species in plant signal transduction. Plant science 161(3), 405-414.
  • Wien H (1997) The cucurbits: Cucumber, melon, squash and pumpkin. Health-promoting properties of fruitand vegetables, 118-134
  • Yavuz D, Gökmen Yılmaz F, Seymen M, Korkmaz A, Baştaş KK (2024). Effects of newly isolated rhizobacteria on the physiological characteristics and nutrient uptake of watermelon plants grafted onto different rootstocks under water stress. Journal of Crop Health 76(4), 865-881.
  • Yavuz D, Kılıç E, Seymen M, Dal Y, Kayak N, Kal Ü, Yavuz N (2022). The effect of irrigation water salinity on the morph-physiological and biochemical properties of spinach under deficit irrigation conditions. Scientia Horticulturae 304, 111272.
  • Yavuz D, Seymen M, Kal Ü, Atakul Z, Tanrıverdi ÖB, Türkmen Ö, Yavuz N (2023). Agronomic and physio-biochemical responses of lettuce to exogenous sodium nitroprusside (SNP) applied under different irrigation regimes. Agricultural Water Management 277, 108127.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sebze Yetiştirme ve Islahı
Bölüm Araştırma Makalesi
Yazarlar

Mehmethan Şişman 0009-0001-7477-4063

Songül Kal 0009-0008-8741-5706

Burak Avşar 0009-0004-2150-6171

Musa Seymen 0000-0002-2742-137X

Erken Görünüm Tarihi 7 Ağustos 2025
Yayımlanma Tarihi
Gönderilme Tarihi 17 Şubat 2025
Kabul Tarihi 17 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 39 Sayı: 2

Kaynak Göster

EndNote Şişman M, Kal S, Avşar B, Seymen M (01 Ağustos 2025) Interactive Effects of Water Salinity and Water-Deficit on Biochemical Content and Photosynthetic Activity of Melon (Cucumis melo L.) Seedlings. Selcuk Journal of Agriculture and Food Sciences 39 2 320–333.

Selcuk Journal of Agriculture and Food Sciences Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır.