Derleme
BibTex RIS Kaynak Göster

Biyokimyasal Reaksiyon Sistemlerinin Modellenmesi için Deterministik ve Stokastik Yaklaşım

Yıl 2021, Cilt: 47 Sayı: 1, 1 - 15, 30.04.2021
https://doi.org/10.35238/sufefd.842631

Öz

Biyokimyasal süreçler, birbirleriyle, farklı reaksiyon kanallarıyla etkileşime giren türleri içeren reaksiyon ağları olarak düşünülebilirler. Deterministik yaklaşım ve stokastik yaklaşım bu sistemlerin dinamiklerini modelleyen iki temel yaklaşımdır. Deterministik yaklaşım geleneksel olandır ve bu tip sistemleri modellemek için Reaksiyon Oran Denklemleri (ROD) adı verilen Adi Diferansiyel Denklemleri (ADD) kullanır. Bu yaklaşıma göre sistem dinamikleri sürekli ve deterministiktir. Diğer taraftan, stokastik yaklaşım sistem dinamiklerinin stokastik ve kesikli olduğunu düşünür. Bu yaklaşımda, sistem dinamiklerini modelleyen olasılık fonksiyonunun zamana göre türevi ünlü Temel Kimyasal Denklemini (TKD) sağlar. Stokastik Simülasyon Algoritmaları (SSAs), TKD’nin davranışlarını tam olarak yansıtan bilgisayar tabanlı algoritmalardır. SSA’nın doğrudan ve ilk reaksiyon metodu olmak üzere iki farklı versiyonu vardır. Bu çalışmada, deterministik ve stokastik yaklaşımın temellerini ve birbirleriyle olan ilişkilerini açıkladık. Farklı boyutlardaki sistemlerin doğrudan metot ve ROD algoritmalarını R programlama dili ile yazdık ve kodlarımız ile birlikte simülasyon sonuçlarımızı sunduk.

Destekleyen Kurum

SELÇUK ÜNİVERSİTEİ BAP OFİSİ

Proje Numarası

Proje No: 19201104

Kaynakça

  • Reference 1: Arkin, A., Ross, J., McAdams, H. H., Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells, Genetics, 149(4), 1633–1648 (1998).
  • Reference 1-2: Altıntan, D., Koeppl, H. Hybrid master equation for jump diffusion approximation of biomolecular reaction networks,BIT Numerical Mathematics, vol. 60,no. 2, pp. 261. 294, (2020) .
  • Reference 3: Anderson, D. F., Kurtz, T. G. Continuous time Markov chain models for chemical reaction networks”. Design and analysis of biomolecular circuits. Editörler: Koeppl, H., Setti,G., Bernardo, M. d., Densmore D., New York: Springer-Verlag, (2011).
  • Reference 4: Arkin, A., Ross, J., McAdams, H. H., Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells, Genetics, 149(4), 1633–1648 (1998).
  • Reference 5: Cao, Y., Li, H., Petzold, L., Efficient formulation of the stochastic simula- tion algorithm for chemically reacting systems, Journal of Chemical Physics, 121(9), 4059–4067 (2004).
  • Reference 6: Cao, Y. , Gillespie, D. T. and Petzold, L. R. , The slow-scale stochastic simulation algorithm, J. Chem. Phys., 122 ,014116 (2005).
  • Reference 7: Cao, Y. , Gillespie, D. T. and Petzold, L. R. , Efficient step size selection for the tau-leaping simulation method,The Journal of Chemical Physics, vol. 124, p.044109, (2006).
  • Reference 8: Crudu A, Debussche A and Radulescu, Hybrid stochastic simplifications for multiscale gene networks BMC Systems of Biology 3, 89, (2009).
  • Reference 9: Ganguly, A., Altıntan, D. and H. Koeppl, Jump-diffusion approximation of stochastic reaction dynamics: Error bounds and algorithms,Multiscale Model. Simul., vol. 13, no. 4, pp. 1390-1419, (2015).
  • Reference 10: Gibson, M. A. and Bruck, J., Efficient exact stochastic simulation of chemical systems with many species and many channels, Journal of Physical Chemistry, 104, 1876-1889 (2000).
  • Reference 11: Gillespie, D. T., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, Journal of Computational Physics, 22(4), 403–434 (1976).
  • Reference 12: Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, Journal of Physical Chemistry, 81(25), 2340–2361 (1977).
  • Reference 13: Gillespie, D. T., A rigorous derivation of the chemical master equation, Physica A, 188(1–3), 404–425 (1992).
  • Reference 14: Gillespie, D. T., Approximate accelerated stochastic simulation of chemically reacting systems, Journal of Chemical Physics, 115(4), 1716–1733 (2001).
  • Reference 15: Gillespie, D. T., Stochastic simulation of chemical kinetics, Annual Review of Physical Chemistry, 58, 35–55 (2007).

Deterministic and Stochastic Approach for Modelling Biochemical Reaction Systems

Yıl 2021, Cilt: 47 Sayı: 1, 1 - 15, 30.04.2021
https://doi.org/10.35238/sufefd.842631

Öz

Biochemical processes can be thought as a reaction network containing species interacting with each other via different reaction channels. Deterministic approach, stochastic approach are two fundamental approaches modelling the dynamics of these systems. Deterministic approach is the traditional one and it uses Ordinary Differential Equations (ODEs), namely, Reaction Rate Equations (RREs) to model these kind of systems. According to this approach, the system dynamics are continuous and deterministic. On the other hand, stochastic approach assumes that the system dynamics are stochastic adn deterministic. In this approach, the time derivative of the probability function representing the dynamics of the system satisfies the celebrated Chemical Master Equation (CME). Stochastic Simulation Algorithms (SSAs) are computer based algorithms which generate exact realizations of the given CME. There are two versions of SSAs which are direct method and first reaction method. In this study, we explain the bases of deterministic approach, stochastic approach and their relations with each other. We have written SSA direct and RRE algorithms of systems in different sizes by using R programming language and presented our simulation results together with our codes.

Proje Numarası

Proje No: 19201104

Kaynakça

  • Reference 1: Arkin, A., Ross, J., McAdams, H. H., Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells, Genetics, 149(4), 1633–1648 (1998).
  • Reference 1-2: Altıntan, D., Koeppl, H. Hybrid master equation for jump diffusion approximation of biomolecular reaction networks,BIT Numerical Mathematics, vol. 60,no. 2, pp. 261. 294, (2020) .
  • Reference 3: Anderson, D. F., Kurtz, T. G. Continuous time Markov chain models for chemical reaction networks”. Design and analysis of biomolecular circuits. Editörler: Koeppl, H., Setti,G., Bernardo, M. d., Densmore D., New York: Springer-Verlag, (2011).
  • Reference 4: Arkin, A., Ross, J., McAdams, H. H., Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells, Genetics, 149(4), 1633–1648 (1998).
  • Reference 5: Cao, Y., Li, H., Petzold, L., Efficient formulation of the stochastic simula- tion algorithm for chemically reacting systems, Journal of Chemical Physics, 121(9), 4059–4067 (2004).
  • Reference 6: Cao, Y. , Gillespie, D. T. and Petzold, L. R. , The slow-scale stochastic simulation algorithm, J. Chem. Phys., 122 ,014116 (2005).
  • Reference 7: Cao, Y. , Gillespie, D. T. and Petzold, L. R. , Efficient step size selection for the tau-leaping simulation method,The Journal of Chemical Physics, vol. 124, p.044109, (2006).
  • Reference 8: Crudu A, Debussche A and Radulescu, Hybrid stochastic simplifications for multiscale gene networks BMC Systems of Biology 3, 89, (2009).
  • Reference 9: Ganguly, A., Altıntan, D. and H. Koeppl, Jump-diffusion approximation of stochastic reaction dynamics: Error bounds and algorithms,Multiscale Model. Simul., vol. 13, no. 4, pp. 1390-1419, (2015).
  • Reference 10: Gibson, M. A. and Bruck, J., Efficient exact stochastic simulation of chemical systems with many species and many channels, Journal of Physical Chemistry, 104, 1876-1889 (2000).
  • Reference 11: Gillespie, D. T., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, Journal of Computational Physics, 22(4), 403–434 (1976).
  • Reference 12: Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, Journal of Physical Chemistry, 81(25), 2340–2361 (1977).
  • Reference 13: Gillespie, D. T., A rigorous derivation of the chemical master equation, Physica A, 188(1–3), 404–425 (1992).
  • Reference 14: Gillespie, D. T., Approximate accelerated stochastic simulation of chemically reacting systems, Journal of Chemical Physics, 115(4), 1716–1733 (2001).
  • Reference 15: Gillespie, D. T., Stochastic simulation of chemical kinetics, Annual Review of Physical Chemistry, 58, 35–55 (2007).
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Büşranur Oğraş 0000-0003-3264-0718

Derya Altıntan 0000-0003-3497-7760

Proje Numarası Proje No: 19201104
Yayımlanma Tarihi 30 Nisan 2021
Gönderilme Tarihi 17 Aralık 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 47 Sayı: 1

Kaynak Göster

APA Oğraş, B., & Altıntan, D. (2021). Biyokimyasal Reaksiyon Sistemlerinin Modellenmesi için Deterministik ve Stokastik Yaklaşım. Selcuk University Journal of Science Faculty, 47(1), 1-15. https://doi.org/10.35238/sufefd.842631
AMA Oğraş B, Altıntan D. Biyokimyasal Reaksiyon Sistemlerinin Modellenmesi için Deterministik ve Stokastik Yaklaşım. Selcuk University Journal of Science Faculty. Nisan 2021;47(1):1-15. doi:10.35238/sufefd.842631
Chicago Oğraş, Büşranur, ve Derya Altıntan. “Biyokimyasal Reaksiyon Sistemlerinin Modellenmesi için Deterministik Ve Stokastik Yaklaşım”. Selcuk University Journal of Science Faculty 47, sy. 1 (Nisan 2021): 1-15. https://doi.org/10.35238/sufefd.842631.
EndNote Oğraş B, Altıntan D (01 Nisan 2021) Biyokimyasal Reaksiyon Sistemlerinin Modellenmesi için Deterministik ve Stokastik Yaklaşım. Selcuk University Journal of Science Faculty 47 1 1–15.
IEEE B. Oğraş ve D. Altıntan, “Biyokimyasal Reaksiyon Sistemlerinin Modellenmesi için Deterministik ve Stokastik Yaklaşım”, Selcuk University Journal of Science Faculty, c. 47, sy. 1, ss. 1–15, 2021, doi: 10.35238/sufefd.842631.
ISNAD Oğraş, Büşranur - Altıntan, Derya. “Biyokimyasal Reaksiyon Sistemlerinin Modellenmesi için Deterministik Ve Stokastik Yaklaşım”. Selcuk University Journal of Science Faculty 47/1 (Nisan 2021), 1-15. https://doi.org/10.35238/sufefd.842631.
JAMA Oğraş B, Altıntan D. Biyokimyasal Reaksiyon Sistemlerinin Modellenmesi için Deterministik ve Stokastik Yaklaşım. Selcuk University Journal of Science Faculty. 2021;47:1–15.
MLA Oğraş, Büşranur ve Derya Altıntan. “Biyokimyasal Reaksiyon Sistemlerinin Modellenmesi için Deterministik Ve Stokastik Yaklaşım”. Selcuk University Journal of Science Faculty, c. 47, sy. 1, 2021, ss. 1-15, doi:10.35238/sufefd.842631.
Vancouver Oğraş B, Altıntan D. Biyokimyasal Reaksiyon Sistemlerinin Modellenmesi için Deterministik ve Stokastik Yaklaşım. Selcuk University Journal of Science Faculty. 2021;47(1):1-15.

Journal Owner: On behalf of Selçuk University Faculty of Science, Rector Prof. Dr. Hüseyin YILMAZ
Selcuk University Journal of Science Faculty accepts articles in Turkish and English with original results in basic sciences and other applied sciences. The journal may also include compilations containing current innovations.

It was first published in 1981 as "S.Ü. Fen-Edebiyat Fakültesi Dergisi" and was published under this name until 1984 (Number 1-4).
In 1984, its name was changed to "S.Ü. Fen-Edeb. Fak. Fen Dergisi" and it was published under this name as of the 5th issue.
When the Faculty of Letters and Sciences was separated into the Faculty of Science and the Faculty of Letters with the decision of the Council of Ministers numbered 2008/4344 published in the Official Gazette dated 3 December 2008 and numbered 27073, it has been published as "Selcuk University Journal of Science Faculty" between 2009-2025. 
It has been scanned in DergiPark since 2016.

88x31.png

Selcuk Journal of Science is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.