Araştırma Makalesi
BibTex RIS Kaynak Göster

Caspase 3, Caspase 8, Caspase 9, Granzyme-B and Apaf-1 Levels in Familial Mediterranean Fever Patients Treated with Colchicine: Experimental and Theoretical Methods

Yıl 2025, Cilt: 9 Sayı: 5, 40 - 53

Öz

Familial Mediterranean Fever disease (FMF) is an autosomal recessive genetic disease, as well as a disease that seriously impairs the quality of life, accompanied by the appearance of symptoms such as recurrent high fever, peritonitis and acute synovitis. In FMF disease, a mutation status in the MEFV gene is encountered. The presence of faulty protein synthesis as a result of this mutation mediates the emergence of the disease. It is thought that there may be a condition associated with apoptosis in the pathogenesis of this disease. Apoptosis is a form of cell death in which energy is expended and programmed with great importance in maintaining cellular balance. In this study, the levels of Caspase 3, Caspase 8, Caspase 9, Granzyme B and Apaf 1 from apoptosis-related proteins were analyzed using the ELISA method in serum samples obtained from FMF patients treated with colchicine and a healthy control group. There was no statistically significant difference between Caspase 3 (P=0, 111), Granzyme B (P=0, 304), Apaf 1 (P=0, 097) and Caspase 8 (P=0, 245) levels in the FMF patient group compared to the control group (p >0, 05). A statistically significant difference was found in the Caspase 9 levels in the FMF patient group (P=0.001) compared to the control group (p<0.05). In this study, in which we aim to reveal the relationship between FMF and apoptosis, we can predict that drug use mediates the stabilization of apoptosis rate after an attack. However, in order for the relationship between FMF and apoptosis to be revealed more clearly, other studies using other advanced methods are also needed. However, Caspase 3 protein (PDB IDs: 2XYG), Caspase 8 protein (PDB ID: 3KIQ), Caspase 9 protein (PDB ID: 2AR9), Granzyme B protein (PDB ID: 1FQ3), and Apaf 1 protein (PDB ID: 3SDZ) were all subjected to an investigation to determine the effects of the chemical Colchicine. Research using the ADME/T method was carried out on the compounds that demonstrated the highest levels of activity.

Kaynakça

  • [1] S.E. Goldfinger, Colchicine for familial Mediterranean fever, N. Engl. J. Med. 287(25) (1972) 1302.
  • [2] A. Chaaban, Z. Salman, L. Karam, P.H. Kobeissy, J.N. Ibrahim, Updates on the role of epigenetics in familial mediterranean fever (FMF), Orphanet Journal of Rare Diseases 19(1) (2024) 90.
  • [3] M. Lancieri, M. Bustaffa, S. Palmeri, I. Prigione,, F. Penco, R. Papa, ... & M. Gattorno, An update on familial Mediterranean fever, International Journal of Molecular Sciences 24(11) (2023) 9584.
  • [4] S. Ozen, Update in familial Mediterranean fever, Current Opinion in Rheumatology 33(5) (2021) 398-402.
  • [5] F.M.F. French, Consortium. A candidate gene for familial Mediterranean fever, Nat. Genet. 17 (1997) 25-31.
  • [6] G.N. Goulielmos, E. Fragouli, I. Aksentijevich, P. Sidiropoulos, D.T. Boumpas, E. Eliopoulos,, Mutational analysis of the PRYSPRY domain of pyrin and implications for familial mediterranean fever (FMF), Biochemical and biophysical research communications 345(4) (2006) 1326-1332.
  • [7] I. Mansour, V. Delague, C. Cazeneuve, C. Dodé, E. Chouery, C. Pêcheux, ... & G. Lefranc, Familial Mediterranean fever in Lebanon: mutation spectrum, evidence for cases in Maronites, Greek orthodoxes, Greek catholics, Syriacs and Chiites and for an association between amyloidosis and M694V and M694I mutations, European Journal of Human Genetics 9(1) (2001) 51-55.
  • [8] N. Akar, M. Misiroglu, F. Yalcinkaya, E. Akar, N. Cakar, N. Tümer, ... & Y. Matzner, MEFV mutations in Turkish patients suffering from familial Mediterranean fever, Human mutation 15(1) (2000) 118.
  • [9] N. Gang, J.P. Drenth, P. Langevitz, D. Zemer, N. Brezniak, M. Pras, J.W. van der Meer, A. Livneh, Activation of the cytokine network in familial Mediterranean fever, J. Rheumatol. 26(4) (1999) 890-897.
  • [10] E. Aypar, S. Özen, H. Okur, T. Kutluk, N. Besbaş, A. Bakkaloglu, Th1 Polarization İn Familial Mediterranean Fever, J. Rheumatol. 30 (2003) 2011-2013.
  • [11] H. Direskeneli, H. Ozdogan, C. Korkmaz, T. Akoglu, H. Yazici, Serum soluble intercellular adhesion molecule 1 and interleukin 8 levels in familial Mediterranean fever, The Journal of rheumatology 26(9) (1999) 1983-1986.
  • [12] E. Erken, R. Güneşaçar, S. Ozbek, K. Konca, Serum soluble interleukin-2 receptor levels in familial Mediterranean fever, Annals of the rheumatic diseases 55(11) (1996) 852-855.
  • [13] Y. Baykal, K. Saglam, M.I. Yilmaz, A. Taslipinar, S.B. Akinci, A. Inal, Serum sIL-2r, IL-6, IL-10 and TNF-α level in familial Mediterranean fever patients, Clinical rheumatology 22(2) (2003) 99-101.
  • [14] M. Hizal, A. Tufan, R. Mercan, O.T. Pasaoglu, H. Pasaoglu, S. Haznedaroglu, ... & M.A. Ozturk, Interleukin-21 and Interleukin-23 levels in familial Mediterranean Fever before and after treatment: the role of cytokines in disease pathogenesis, Scientific Reports 14(1) (2024) 21351.
  • [15] K. Matsushita, M. Takeoka, J. Sagara, N. Itano, Y. Kurose, A. Nakamura, ... & C. Li, A Splice Variant of ASC Regulates IL-1b Release and Aggregates Differently from İntact ASC, Mediators of Inflammation 2009 (2009) 24.
  • [16] F. Martinon F, K. Burns, J. Tschopp, The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β, Molecular cell 10(2) (2002) 417-426.
  • [17] J.J. Chae, G. Wood, K. Richard, H. Jaffe, N.T. Colburn, S.L. Masters, ... & D.L. Kastner, The familial Mediterranean fever protein, pyrin, is cleaved by caspase-1 and activates NF-κB through its N-terminal fragment, Blood 112(5) (2008) 1794-1803.
  • [18] O. Morana, W. Wood, C.D. Gregory, The apoptosis paradox in cancer, International journal of molecular sciences 23(3) (2022) 1328.
  • [19] B.B. Erdoğan, E.K. Uzaslan, Apoptozis mekanizmaları: tümör gelişiminde Fas-FasL bağımlı apoptozis, Turkiye Klinikleri Archives of Lung 4(3) (2003) 165-174.
  • [20] H. Akşit, A. Bildik, Apoptozis, Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi 19(1) (2008) 55-63.
  • [21] J. Zhang, M. Xu, Apoptotic DNA fragmentation and tissue homeostasis, Trends in Cell Biology 12(2) (2002) 84- 89.
  • [22] A. Balakumaran, G.A. Campbell, M.T. Moslen, Calcium Channel Blockers Induce Thymic Apoptosisin Vivoin Rats, Toxicology and applied pharmacology, 139(1) (1996) 122-127.
  • [23] M. Behnia, K.A. Robertson, W.J. Martin, Lung infections: role of apoptosis in host defense and pathogenesis of disease, CHEST Journal 117(6) (2000) 771-1777.
  • [24] G.M. Cooper, Programmed cell death, The cell. In: Cooper GM (Eds) Chapter 14. ASM Pres., Washington, 1994, 592-596.
  • [25] C. Garrido, L. Galluzzi, M. Brunet, P.E. Puig, C. Didelot, G. Kroemer, Mechanisms of cytochrome c release from mitochondria, Cell Death & Differentiation 13(9) (2006) 1423-1433.
  • [26] H. Wang, Y. Huang, J. He, L. Zhong, Y. Zhao, Dual roles of granzyme B, Scandinavian Journal of Immunology 94(3) (2021) e13086.
  • [27] D.W. Nicholson, Caspase structure, proteolytic substrates, and function during apoptotic cell death, Cell Death Differ. 6 (1999) 1028-1042.
  • [28] H.R. Stennicke, J.M. Jurgensmeier, H. Shin, Q. Deveraux, B.B. Wolf, X. Yang, ... & G.S. Salvesen, Pro-caspase-3 is a major physiologic target of caspase-8, Journal of Biological Chemistry 273(42) (1998) 27084-27090.
  • [29] R. Shakeri, A. Kheirollahi, J. Davoodi, Apaf-1: Regulation and function in cell death, Biochimie 135 (2017) 111-125.
  • [30] J.A. Trapani, Target cell apoptosis induced by cytotoxic T cells and natural killer cells involves synergy between the pore‐forming protein, perforin, and the serine protease, granzyme B, Australian and New Zealand journal of medicine 25(6) (1995) 793-799.
  • [31] H. Yalazan, D. Koç, F.A. Kose, M.İ. Akgül, S. Fandaklı, B. Tüzün, ... & H. Kantekin, Chalcone-based schiff bases: Design, synthesis, structural characterization and biological effects, Journal of Molecular Structure 1337 (2025) 142211.
  • [32] G. Güçlü, B. Tüzün, E. Uçar, N. Eruygur, M. Ataş, M. İnanır, ... & B. Coşge Şenkal, Phytochemical and Biological Activity Evaluation of Globularia orientalis L, Korean Journal of Chemical Engineering (2025) 1-17.
  • [33] H. Medetalibeyoğlu, A. Atalay, R. Sağlamtaş, S. Manap, A.B. Ortaakarsu, E. Ekinci, ... & B. Tüzün, Synthesis, design, and cholinesterase inhibitory activity of novel 1, 2, 4-triazole Schiff bases: A combined experimental and computational approach, International Journal of Biological Macromolecules 306, (2025) 141350.
  • [34] A.E.M.A. Allah, S. Mortada, B. Tüzün, W. Guerrab, M. Qostal, J.T. Mague, ... & Y. Ramli, Novel thiohydantoin derivatives: design, synthesis, spectroscopic characterization, crystal structure, SAR, DFT, molecular docking, pharmacological and toxicological activities, Journal of Molecular Structure 1335 (2025) 141995.
  • [35] R. Ganesan, S. Jelakovic, P.R. Mittl, A. Caflisch, M.G. Grütter, In silico identification and crystal structure validation of caspase-3 inhibitors without a P1 aspartic acid moiety, Structural Biology and Crystallization Communications 67(8) (2011) 842-850.
  • [36] C. Neubauer, Y.G. Gao, K.R. Andersen, C.M. Dunham, A.C. Kelley, J. Hentschel, ... & D.E. Brodersen, The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE, Cell 139(6) (2009) 1084-1095.
  • [37] Y. Chao, E.N. Shiozaki, S.M. Srinivasula, D.J. Rigotti, R. Fairman, Y. Shi, Engineering a dimeric caspase-9: a re-evaluation of the induced proximity model for caspase activation, PLoS biology 3(6) (2005) e183.
  • [38] E. Estébanez-Perpiñá, P. Fuentes-Prior, D. Belorgey, M. Braun, R. Kiefersauer, K. Maskos, ... & W. Bode, Crystal structure of the caspase activator human granzyme B, a proteinase highly specific for an Asp-P1 residue (2000).
  • [39] V.S. Tadwal, M.S.S. Manimekalai, G. Grueber, Engineered tryptophan in the adenine-binding pocket of catalytic subunit A of A-ATP synthase demonstrates the importance of aromatic residues in adenine binding, forming a tool for steady-state and time-resolved fluorescence spectroscopy, Structural Biology and Crystallization Communications 67(12) (2011) 1485-1491.
  • [40] S. Kapancık, V.K. Çelik, S. Kılıçkap, T. Kacan, S. Kapancik, The relationship of agmatine deficiency with the lung cancer, Uhod-Uluslararasi Hematoloji-Onkoloji Dergisi 2 (26) (2016) 103-109.
  • [41] Schrödinger Release 2022-4: Maestro, Schrödinger, LLC, New York, NY, 2022.
  • [42] Schrödinger Release 2022-4: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2022; Impact, Schrödinger, LLC, New York, NY; Prime, Schrödinger, LLC, New York, NY, 2022.
  • [43] Schrödinger Release 2022-4: LigPrep, Schrödinger, LLC, New York, NY, 2022.
  • [44] I. Shahzadi, A.F. Zahoor, B. Tüzün, A. Mansha, M.N. Anjum, A. Rasul, ... & M. Mojzych, Repositioning of acefylline as anti-cancer drug: Synthesis, anticancer and computational studies of azomethines derived from acefylline tethered 4-amino-3-mercapto-1, 2, 4-triazole, Plos one 17(12) (2022) e0278027.
  • [45] M. El Faydy, L. Lakhrissi, N. Dahaieh, K. Ounine, B. Tüzün, N. Chahboun, ... & A. Zarrouk, Synthesis, Biological Properties, and Molecular Docking Study of Novel 1, 2, 3-Triazole-8-quinolinol Hybrids, ACS omega 9(23) (2024) 25395–25409.
  • [46] Schrödinger Release 2022-4: QikProp, Schrödinger, LLC, New York, NY, 2022.
  • [47] E. Ben-Chetrit, Old paradigms and new concepts in familial Mediterranean fever (FMF): an update 2023, Rheumatology 63(2) (2024) 309-318.
  • [48] M. Lidar, A. Livneh, Familial Mediterranean fever: clinical, molecular and management advancements, Neth. J. Med. 65(9) (2007) 318-24.
  • [49] M. Centola, G. Wood, D.M. Frucht, J. Galon, M. Aringer, C. Farrell, ... & J.J. O'Shea, The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators, Blood 95(10) (2000) 3223-3231.
  • [50] D. Kashyap, V.K. Garg, N. Goel, Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis, Advances in protein chemistry and structural biology 125 (2021) 73-120.
  • [51] S. Das, N. Shukla, S.S. Singh, S. Kushwaha, R. Shrivastava, Mechanism of interaction between autophagy and apoptosis in cancer, Apoptosis (2021) 1-22.
  • [52] N.S. Erekat, Apoptosis and its therapeutic implications in neurodegenerative diseases, Clinical Anatomy 35(1) (2022) 65-78.
  • [53] A.G. Porter, R.U. Jänicke, Emerging roles of caspase-3 in apoptosis, Cell death and differentiation 6(2) (1999) 99-104.
  • [54] D.A. Carson, J.M. Ribeiro, Apoptosis and disease, The Lancet 341(8855) (1993) 1251-1254.
  • [55] S. Elavazhagan, K. Fatehchand, V. Santhanam, H. Fang, L. Ren, S. Gautam, J.P. Vasilakos, Granzyme B expression is enhanced in human monocytes by TLR8 agonists and contributes to antibody-dependent cellular cytotoxicity, The Journal of Immunology 194(6) (2015) 2786-2795.
  • [56] H. Karatas, İ.B. Kul, M. Aydin, B. Tüzün, P. Taslimi, Z. Kokbudak, Alzheimer’s Disease Drug Design by Synthesis, Characterization, Enzyme Inhibition, In Silico, SAR Analysis and MM-GBSA Analysis of Schiff Bases Derivatives, Korean Journal of Chemical Engineering (2025) 1-19.
  • [57] A. Eddhimi, A. Rafik, B. Tüzün, G. Jhaa, K. Yamni, H. Zouihri, Growth, molecular docking, Hirshfeld surface analysis and first-principles investigation on the structural, morphological and mechanical properties of the OIH hybrid: C2H8N4S22+· 2HSO4− under pressure, Journal of Molecular Structure 1324 (2025) 140809.
  • [58] M. Usman, A. Alam, M. Zainab, Khan, B. Tüzün, M. Ayaz, ... & M. Ahmad, Benzothiazole Derived Ether Hybrids as Potent Anti‐Thymidine Phosphorylase Agents: Synthesis, In Vitro, and Computational Investigations, Chemistry & Biodiversity (2025) e202403385.
  • [59] B. Tüzün, Evaluation of cytotoxicity, chemical composition, antioxidant potential, apoptosis relationship, molecular docking, and MM-GBSA analysis of Rumex crispus leaf extracts, Journal of Molecular Structure 1323 (2025) 140791.
  • [60] M. Akkus, M. Kirici, A. Poustforoosh, M.K. Erdogan, R. Gundogdu, B. Tüzün, P. Taslimi, Phenolic Compounds: Investigating Their Anti-Carbonic Anhydrase, Anti-Cholinesterase, Anticancer, Anticholinergic, and Antiepileptic Properties Through Molecular Docking, MM-GBSA, and Dynamics Analyses, Korean Journal of Chemical Engineering (2025) 1-20.
  • [61] N. Ullah, A. Alam, B. Tüzün, N.U. Rehman, M. Ayaz, A.A. Elhenawy, ... & M. Ahmad, Synthesis of novel thiazole derivatives containing 3-methylthiophene carbaldehyde as potent anti α-glucosidase agents: In vitro evaluation, molecular docking, dynamics, MM-GBSA, and DFT studies, Journal of Molecular Structure 1321 (2025) 140070.
  • [62] H. Yalazan, D. Koç, F. Aydın Kose, S. Fandaklı, B. Tüzün, M.İ. Akgül, ... & H. Kantekin, Design, syntheses, theoretical calculations, MM-GBSA, potential anti-cancer and enzyme activities of novel Schiff base compounds, Journal of Biomolecular Structure and Dynamics 42(23) (2024) 13100-13113.
  • [63] S. Çi̇çek, Y.B. Korkmaz, B. Tüzün, S. Işik, M.T. Yilmaz, F. Özoğul, A study on insecticidal activity of the fennel (Foeniculum vulgare) essential oil and its nanoemulsion against stored product pests and molecular docking evaluation, Industrial Crops and Products 222 (2024) 119859.
  • [64] S. Manap, H. Medetalibeyoğlu, A. Kılıç, O.F. Karataş, B. Tüzün, M. Alkan, ... & H. Yüksek, Synthesis, molecular modeling investigation, molecular dynamic and ADME prediction of some novel Mannich bases derived from 1, 2, 4-triazole, and assessment of their anticancer activity, Journal of Biomolecular Structure and Dynamics 42(21) (2024) 11916-11930.
  • [65] O. Myroslava, A. Poustforoosh, B. Inna, V. Parchenko, B. Tüzün, B. Gutyj, Molecular descriptors and in silico studies of 4-((5-(decylthio)-4-methyl-4n-1, 2, 4-triazol-3-yl) methyl) morpholine as a potential drug for the treatment of fungal pathologies, Computational Biology and Chemistry 113 (2024) 108206.
  • [66] A. Rafik, B. Tuzun, H. Zouihri, A. Poustforoosh, R. Hsissou, A.A. Elhenaey, T. Guedira, Morphology studies, optic proprieties, hirschfeld electrostatic potential mapping, docking molecular anti-inflammatory, and dynamic molecular approaches of hybrid phosphate, Journal of the Indian Chemical Society 101(11) (2024) 101419.
  • [67] H. Medetalibeyoğlu, S. Manap, M. Alkan, M. Beytur, N. Barlak, O.F. Karatas, ... & P. Taslimi, Novel Schiff Bases: Synthesis, characterization, bioactivity, cytotoxicity, and computational evaluations, Polycyclic Aromatic Compounds (2024) 1-19.
  • [68] M. Tapera, H. Kekeçmuhammed, B. Tüzün, S.D. Daştan, M.S. Çelik, P. Taslimi, ... & E. Sarıpınar, Novel 1, 2, 4-triazole-maleamic acid derivatives: Synthesis and evaluation as anticancer agents with carbonic anhydrase inhibitory activity, Journal of Molecular Structure 1313 (2024) 138680.
  • [69] A.N. Khalilov, J. Cisterna, A. Cárdenas, B. Tuzun, S. Erkan, A.V. Gurbanov, I. Brito, Synthesis, crystal structure, Hirshfeld surface analyses, and DFT studies of (S)-2-(3, 5-di tert butyl 4-hydroxyphenyl)-3, 3-diethoxy-1-phenylpropan-1-one, Journal of Molecular Structure 1313 (2024) 138652.
  • [70] I. Alishba, Ali, S. Hameed, K.M. Khan, U. Salar, M. Taha, ... & E. Ulukaya, Exploring Benzo [b][1, 4] Thiazine Derivatives: Multitarget Inhibition, Structure–Activity Relationship, Molecular Docking, and ADMET Analysis, ChemistrySelect 9(38) (2024) e202404087.
  • [71] M.S. Çelik, N. Kütük, A.F. Yenidünya, S. Çetinkaya, B. Tüzün, Removal of safranin O from wastewater using Streptomyces griseobrunneus dead biomass and in silico calculations, Biomass Conversion and Biorefinery 14(20) (2024) 25873-25884.
  • [72] C.A. Lipinski, Lead-and drug-like compounds: the rule-of-five revolution, Drug Discovery Today: Technologies 1(4) (2004) 337-341.
  • [73] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Advanced drug delivery reviews 23 (1997) 3-25.
  • [74] W.J. Jorgensen, E.M. Duffy, Prediction of drug solubility from structure, Advanced drug delivery reviews 54(3) (2002) 355-366.
Yıl 2025, Cilt: 9 Sayı: 5, 40 - 53

Öz

Kaynakça

  • [1] S.E. Goldfinger, Colchicine for familial Mediterranean fever, N. Engl. J. Med. 287(25) (1972) 1302.
  • [2] A. Chaaban, Z. Salman, L. Karam, P.H. Kobeissy, J.N. Ibrahim, Updates on the role of epigenetics in familial mediterranean fever (FMF), Orphanet Journal of Rare Diseases 19(1) (2024) 90.
  • [3] M. Lancieri, M. Bustaffa, S. Palmeri, I. Prigione,, F. Penco, R. Papa, ... & M. Gattorno, An update on familial Mediterranean fever, International Journal of Molecular Sciences 24(11) (2023) 9584.
  • [4] S. Ozen, Update in familial Mediterranean fever, Current Opinion in Rheumatology 33(5) (2021) 398-402.
  • [5] F.M.F. French, Consortium. A candidate gene for familial Mediterranean fever, Nat. Genet. 17 (1997) 25-31.
  • [6] G.N. Goulielmos, E. Fragouli, I. Aksentijevich, P. Sidiropoulos, D.T. Boumpas, E. Eliopoulos,, Mutational analysis of the PRYSPRY domain of pyrin and implications for familial mediterranean fever (FMF), Biochemical and biophysical research communications 345(4) (2006) 1326-1332.
  • [7] I. Mansour, V. Delague, C. Cazeneuve, C. Dodé, E. Chouery, C. Pêcheux, ... & G. Lefranc, Familial Mediterranean fever in Lebanon: mutation spectrum, evidence for cases in Maronites, Greek orthodoxes, Greek catholics, Syriacs and Chiites and for an association between amyloidosis and M694V and M694I mutations, European Journal of Human Genetics 9(1) (2001) 51-55.
  • [8] N. Akar, M. Misiroglu, F. Yalcinkaya, E. Akar, N. Cakar, N. Tümer, ... & Y. Matzner, MEFV mutations in Turkish patients suffering from familial Mediterranean fever, Human mutation 15(1) (2000) 118.
  • [9] N. Gang, J.P. Drenth, P. Langevitz, D. Zemer, N. Brezniak, M. Pras, J.W. van der Meer, A. Livneh, Activation of the cytokine network in familial Mediterranean fever, J. Rheumatol. 26(4) (1999) 890-897.
  • [10] E. Aypar, S. Özen, H. Okur, T. Kutluk, N. Besbaş, A. Bakkaloglu, Th1 Polarization İn Familial Mediterranean Fever, J. Rheumatol. 30 (2003) 2011-2013.
  • [11] H. Direskeneli, H. Ozdogan, C. Korkmaz, T. Akoglu, H. Yazici, Serum soluble intercellular adhesion molecule 1 and interleukin 8 levels in familial Mediterranean fever, The Journal of rheumatology 26(9) (1999) 1983-1986.
  • [12] E. Erken, R. Güneşaçar, S. Ozbek, K. Konca, Serum soluble interleukin-2 receptor levels in familial Mediterranean fever, Annals of the rheumatic diseases 55(11) (1996) 852-855.
  • [13] Y. Baykal, K. Saglam, M.I. Yilmaz, A. Taslipinar, S.B. Akinci, A. Inal, Serum sIL-2r, IL-6, IL-10 and TNF-α level in familial Mediterranean fever patients, Clinical rheumatology 22(2) (2003) 99-101.
  • [14] M. Hizal, A. Tufan, R. Mercan, O.T. Pasaoglu, H. Pasaoglu, S. Haznedaroglu, ... & M.A. Ozturk, Interleukin-21 and Interleukin-23 levels in familial Mediterranean Fever before and after treatment: the role of cytokines in disease pathogenesis, Scientific Reports 14(1) (2024) 21351.
  • [15] K. Matsushita, M. Takeoka, J. Sagara, N. Itano, Y. Kurose, A. Nakamura, ... & C. Li, A Splice Variant of ASC Regulates IL-1b Release and Aggregates Differently from İntact ASC, Mediators of Inflammation 2009 (2009) 24.
  • [16] F. Martinon F, K. Burns, J. Tschopp, The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β, Molecular cell 10(2) (2002) 417-426.
  • [17] J.J. Chae, G. Wood, K. Richard, H. Jaffe, N.T. Colburn, S.L. Masters, ... & D.L. Kastner, The familial Mediterranean fever protein, pyrin, is cleaved by caspase-1 and activates NF-κB through its N-terminal fragment, Blood 112(5) (2008) 1794-1803.
  • [18] O. Morana, W. Wood, C.D. Gregory, The apoptosis paradox in cancer, International journal of molecular sciences 23(3) (2022) 1328.
  • [19] B.B. Erdoğan, E.K. Uzaslan, Apoptozis mekanizmaları: tümör gelişiminde Fas-FasL bağımlı apoptozis, Turkiye Klinikleri Archives of Lung 4(3) (2003) 165-174.
  • [20] H. Akşit, A. Bildik, Apoptozis, Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi 19(1) (2008) 55-63.
  • [21] J. Zhang, M. Xu, Apoptotic DNA fragmentation and tissue homeostasis, Trends in Cell Biology 12(2) (2002) 84- 89.
  • [22] A. Balakumaran, G.A. Campbell, M.T. Moslen, Calcium Channel Blockers Induce Thymic Apoptosisin Vivoin Rats, Toxicology and applied pharmacology, 139(1) (1996) 122-127.
  • [23] M. Behnia, K.A. Robertson, W.J. Martin, Lung infections: role of apoptosis in host defense and pathogenesis of disease, CHEST Journal 117(6) (2000) 771-1777.
  • [24] G.M. Cooper, Programmed cell death, The cell. In: Cooper GM (Eds) Chapter 14. ASM Pres., Washington, 1994, 592-596.
  • [25] C. Garrido, L. Galluzzi, M. Brunet, P.E. Puig, C. Didelot, G. Kroemer, Mechanisms of cytochrome c release from mitochondria, Cell Death & Differentiation 13(9) (2006) 1423-1433.
  • [26] H. Wang, Y. Huang, J. He, L. Zhong, Y. Zhao, Dual roles of granzyme B, Scandinavian Journal of Immunology 94(3) (2021) e13086.
  • [27] D.W. Nicholson, Caspase structure, proteolytic substrates, and function during apoptotic cell death, Cell Death Differ. 6 (1999) 1028-1042.
  • [28] H.R. Stennicke, J.M. Jurgensmeier, H. Shin, Q. Deveraux, B.B. Wolf, X. Yang, ... & G.S. Salvesen, Pro-caspase-3 is a major physiologic target of caspase-8, Journal of Biological Chemistry 273(42) (1998) 27084-27090.
  • [29] R. Shakeri, A. Kheirollahi, J. Davoodi, Apaf-1: Regulation and function in cell death, Biochimie 135 (2017) 111-125.
  • [30] J.A. Trapani, Target cell apoptosis induced by cytotoxic T cells and natural killer cells involves synergy between the pore‐forming protein, perforin, and the serine protease, granzyme B, Australian and New Zealand journal of medicine 25(6) (1995) 793-799.
  • [31] H. Yalazan, D. Koç, F.A. Kose, M.İ. Akgül, S. Fandaklı, B. Tüzün, ... & H. Kantekin, Chalcone-based schiff bases: Design, synthesis, structural characterization and biological effects, Journal of Molecular Structure 1337 (2025) 142211.
  • [32] G. Güçlü, B. Tüzün, E. Uçar, N. Eruygur, M. Ataş, M. İnanır, ... & B. Coşge Şenkal, Phytochemical and Biological Activity Evaluation of Globularia orientalis L, Korean Journal of Chemical Engineering (2025) 1-17.
  • [33] H. Medetalibeyoğlu, A. Atalay, R. Sağlamtaş, S. Manap, A.B. Ortaakarsu, E. Ekinci, ... & B. Tüzün, Synthesis, design, and cholinesterase inhibitory activity of novel 1, 2, 4-triazole Schiff bases: A combined experimental and computational approach, International Journal of Biological Macromolecules 306, (2025) 141350.
  • [34] A.E.M.A. Allah, S. Mortada, B. Tüzün, W. Guerrab, M. Qostal, J.T. Mague, ... & Y. Ramli, Novel thiohydantoin derivatives: design, synthesis, spectroscopic characterization, crystal structure, SAR, DFT, molecular docking, pharmacological and toxicological activities, Journal of Molecular Structure 1335 (2025) 141995.
  • [35] R. Ganesan, S. Jelakovic, P.R. Mittl, A. Caflisch, M.G. Grütter, In silico identification and crystal structure validation of caspase-3 inhibitors without a P1 aspartic acid moiety, Structural Biology and Crystallization Communications 67(8) (2011) 842-850.
  • [36] C. Neubauer, Y.G. Gao, K.R. Andersen, C.M. Dunham, A.C. Kelley, J. Hentschel, ... & D.E. Brodersen, The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE, Cell 139(6) (2009) 1084-1095.
  • [37] Y. Chao, E.N. Shiozaki, S.M. Srinivasula, D.J. Rigotti, R. Fairman, Y. Shi, Engineering a dimeric caspase-9: a re-evaluation of the induced proximity model for caspase activation, PLoS biology 3(6) (2005) e183.
  • [38] E. Estébanez-Perpiñá, P. Fuentes-Prior, D. Belorgey, M. Braun, R. Kiefersauer, K. Maskos, ... & W. Bode, Crystal structure of the caspase activator human granzyme B, a proteinase highly specific for an Asp-P1 residue (2000).
  • [39] V.S. Tadwal, M.S.S. Manimekalai, G. Grueber, Engineered tryptophan in the adenine-binding pocket of catalytic subunit A of A-ATP synthase demonstrates the importance of aromatic residues in adenine binding, forming a tool for steady-state and time-resolved fluorescence spectroscopy, Structural Biology and Crystallization Communications 67(12) (2011) 1485-1491.
  • [40] S. Kapancık, V.K. Çelik, S. Kılıçkap, T. Kacan, S. Kapancik, The relationship of agmatine deficiency with the lung cancer, Uhod-Uluslararasi Hematoloji-Onkoloji Dergisi 2 (26) (2016) 103-109.
  • [41] Schrödinger Release 2022-4: Maestro, Schrödinger, LLC, New York, NY, 2022.
  • [42] Schrödinger Release 2022-4: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2022; Impact, Schrödinger, LLC, New York, NY; Prime, Schrödinger, LLC, New York, NY, 2022.
  • [43] Schrödinger Release 2022-4: LigPrep, Schrödinger, LLC, New York, NY, 2022.
  • [44] I. Shahzadi, A.F. Zahoor, B. Tüzün, A. Mansha, M.N. Anjum, A. Rasul, ... & M. Mojzych, Repositioning of acefylline as anti-cancer drug: Synthesis, anticancer and computational studies of azomethines derived from acefylline tethered 4-amino-3-mercapto-1, 2, 4-triazole, Plos one 17(12) (2022) e0278027.
  • [45] M. El Faydy, L. Lakhrissi, N. Dahaieh, K. Ounine, B. Tüzün, N. Chahboun, ... & A. Zarrouk, Synthesis, Biological Properties, and Molecular Docking Study of Novel 1, 2, 3-Triazole-8-quinolinol Hybrids, ACS omega 9(23) (2024) 25395–25409.
  • [46] Schrödinger Release 2022-4: QikProp, Schrödinger, LLC, New York, NY, 2022.
  • [47] E. Ben-Chetrit, Old paradigms and new concepts in familial Mediterranean fever (FMF): an update 2023, Rheumatology 63(2) (2024) 309-318.
  • [48] M. Lidar, A. Livneh, Familial Mediterranean fever: clinical, molecular and management advancements, Neth. J. Med. 65(9) (2007) 318-24.
  • [49] M. Centola, G. Wood, D.M. Frucht, J. Galon, M. Aringer, C. Farrell, ... & J.J. O'Shea, The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators, Blood 95(10) (2000) 3223-3231.
  • [50] D. Kashyap, V.K. Garg, N. Goel, Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis, Advances in protein chemistry and structural biology 125 (2021) 73-120.
  • [51] S. Das, N. Shukla, S.S. Singh, S. Kushwaha, R. Shrivastava, Mechanism of interaction between autophagy and apoptosis in cancer, Apoptosis (2021) 1-22.
  • [52] N.S. Erekat, Apoptosis and its therapeutic implications in neurodegenerative diseases, Clinical Anatomy 35(1) (2022) 65-78.
  • [53] A.G. Porter, R.U. Jänicke, Emerging roles of caspase-3 in apoptosis, Cell death and differentiation 6(2) (1999) 99-104.
  • [54] D.A. Carson, J.M. Ribeiro, Apoptosis and disease, The Lancet 341(8855) (1993) 1251-1254.
  • [55] S. Elavazhagan, K. Fatehchand, V. Santhanam, H. Fang, L. Ren, S. Gautam, J.P. Vasilakos, Granzyme B expression is enhanced in human monocytes by TLR8 agonists and contributes to antibody-dependent cellular cytotoxicity, The Journal of Immunology 194(6) (2015) 2786-2795.
  • [56] H. Karatas, İ.B. Kul, M. Aydin, B. Tüzün, P. Taslimi, Z. Kokbudak, Alzheimer’s Disease Drug Design by Synthesis, Characterization, Enzyme Inhibition, In Silico, SAR Analysis and MM-GBSA Analysis of Schiff Bases Derivatives, Korean Journal of Chemical Engineering (2025) 1-19.
  • [57] A. Eddhimi, A. Rafik, B. Tüzün, G. Jhaa, K. Yamni, H. Zouihri, Growth, molecular docking, Hirshfeld surface analysis and first-principles investigation on the structural, morphological and mechanical properties of the OIH hybrid: C2H8N4S22+· 2HSO4− under pressure, Journal of Molecular Structure 1324 (2025) 140809.
  • [58] M. Usman, A. Alam, M. Zainab, Khan, B. Tüzün, M. Ayaz, ... & M. Ahmad, Benzothiazole Derived Ether Hybrids as Potent Anti‐Thymidine Phosphorylase Agents: Synthesis, In Vitro, and Computational Investigations, Chemistry & Biodiversity (2025) e202403385.
  • [59] B. Tüzün, Evaluation of cytotoxicity, chemical composition, antioxidant potential, apoptosis relationship, molecular docking, and MM-GBSA analysis of Rumex crispus leaf extracts, Journal of Molecular Structure 1323 (2025) 140791.
  • [60] M. Akkus, M. Kirici, A. Poustforoosh, M.K. Erdogan, R. Gundogdu, B. Tüzün, P. Taslimi, Phenolic Compounds: Investigating Their Anti-Carbonic Anhydrase, Anti-Cholinesterase, Anticancer, Anticholinergic, and Antiepileptic Properties Through Molecular Docking, MM-GBSA, and Dynamics Analyses, Korean Journal of Chemical Engineering (2025) 1-20.
  • [61] N. Ullah, A. Alam, B. Tüzün, N.U. Rehman, M. Ayaz, A.A. Elhenawy, ... & M. Ahmad, Synthesis of novel thiazole derivatives containing 3-methylthiophene carbaldehyde as potent anti α-glucosidase agents: In vitro evaluation, molecular docking, dynamics, MM-GBSA, and DFT studies, Journal of Molecular Structure 1321 (2025) 140070.
  • [62] H. Yalazan, D. Koç, F. Aydın Kose, S. Fandaklı, B. Tüzün, M.İ. Akgül, ... & H. Kantekin, Design, syntheses, theoretical calculations, MM-GBSA, potential anti-cancer and enzyme activities of novel Schiff base compounds, Journal of Biomolecular Structure and Dynamics 42(23) (2024) 13100-13113.
  • [63] S. Çi̇çek, Y.B. Korkmaz, B. Tüzün, S. Işik, M.T. Yilmaz, F. Özoğul, A study on insecticidal activity of the fennel (Foeniculum vulgare) essential oil and its nanoemulsion against stored product pests and molecular docking evaluation, Industrial Crops and Products 222 (2024) 119859.
  • [64] S. Manap, H. Medetalibeyoğlu, A. Kılıç, O.F. Karataş, B. Tüzün, M. Alkan, ... & H. Yüksek, Synthesis, molecular modeling investigation, molecular dynamic and ADME prediction of some novel Mannich bases derived from 1, 2, 4-triazole, and assessment of their anticancer activity, Journal of Biomolecular Structure and Dynamics 42(21) (2024) 11916-11930.
  • [65] O. Myroslava, A. Poustforoosh, B. Inna, V. Parchenko, B. Tüzün, B. Gutyj, Molecular descriptors and in silico studies of 4-((5-(decylthio)-4-methyl-4n-1, 2, 4-triazol-3-yl) methyl) morpholine as a potential drug for the treatment of fungal pathologies, Computational Biology and Chemistry 113 (2024) 108206.
  • [66] A. Rafik, B. Tuzun, H. Zouihri, A. Poustforoosh, R. Hsissou, A.A. Elhenaey, T. Guedira, Morphology studies, optic proprieties, hirschfeld electrostatic potential mapping, docking molecular anti-inflammatory, and dynamic molecular approaches of hybrid phosphate, Journal of the Indian Chemical Society 101(11) (2024) 101419.
  • [67] H. Medetalibeyoğlu, S. Manap, M. Alkan, M. Beytur, N. Barlak, O.F. Karatas, ... & P. Taslimi, Novel Schiff Bases: Synthesis, characterization, bioactivity, cytotoxicity, and computational evaluations, Polycyclic Aromatic Compounds (2024) 1-19.
  • [68] M. Tapera, H. Kekeçmuhammed, B. Tüzün, S.D. Daştan, M.S. Çelik, P. Taslimi, ... & E. Sarıpınar, Novel 1, 2, 4-triazole-maleamic acid derivatives: Synthesis and evaluation as anticancer agents with carbonic anhydrase inhibitory activity, Journal of Molecular Structure 1313 (2024) 138680.
  • [69] A.N. Khalilov, J. Cisterna, A. Cárdenas, B. Tuzun, S. Erkan, A.V. Gurbanov, I. Brito, Synthesis, crystal structure, Hirshfeld surface analyses, and DFT studies of (S)-2-(3, 5-di tert butyl 4-hydroxyphenyl)-3, 3-diethoxy-1-phenylpropan-1-one, Journal of Molecular Structure 1313 (2024) 138652.
  • [70] I. Alishba, Ali, S. Hameed, K.M. Khan, U. Salar, M. Taha, ... & E. Ulukaya, Exploring Benzo [b][1, 4] Thiazine Derivatives: Multitarget Inhibition, Structure–Activity Relationship, Molecular Docking, and ADMET Analysis, ChemistrySelect 9(38) (2024) e202404087.
  • [71] M.S. Çelik, N. Kütük, A.F. Yenidünya, S. Çetinkaya, B. Tüzün, Removal of safranin O from wastewater using Streptomyces griseobrunneus dead biomass and in silico calculations, Biomass Conversion and Biorefinery 14(20) (2024) 25873-25884.
  • [72] C.A. Lipinski, Lead-and drug-like compounds: the rule-of-five revolution, Drug Discovery Today: Technologies 1(4) (2004) 337-341.
  • [73] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Advanced drug delivery reviews 23 (1997) 3-25.
  • [74] W.J. Jorgensen, E.M. Duffy, Prediction of drug solubility from structure, Advanced drug delivery reviews 54(3) (2002) 355-366.
Toplam 74 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Moleküler Görüntüleme
Bölüm Research Article
Yazarlar

Canan Yilmaz Kapancik 0000-0003-1432-4471

Özlem Demirpençe 0000-0001-9019-0845

Ali Şahin 0000-0003-0743-5288

Serkan Kapancık 0000-0003-3019-4275

Sevtap Bakır 0000-0003-1956-0844

Hande Küçük Kurtulgan 0000-0001-9172-3244

Burak Tüzün 0000-0002-0420-2043

Erken Görünüm Tarihi 23 Haziran 2025
Yayımlanma Tarihi
Gönderilme Tarihi 22 Mayıs 2025
Kabul Tarihi 3 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 5

Kaynak Göster

APA Yilmaz Kapancik, C., Demirpençe, Ö., Şahin, A., Kapancık, S., vd. (2025). Caspase 3, Caspase 8, Caspase 9, Granzyme-B and Apaf-1 Levels in Familial Mediterranean Fever Patients Treated with Colchicine: Experimental and Theoretical Methods. Turkish Computational and Theoretical Chemistry, 9(5), 40-53.
AMA Yilmaz Kapancik C, Demirpençe Ö, Şahin A, Kapancık S, Bakır S, Küçük Kurtulgan H, Tüzün B. Caspase 3, Caspase 8, Caspase 9, Granzyme-B and Apaf-1 Levels in Familial Mediterranean Fever Patients Treated with Colchicine: Experimental and Theoretical Methods. Turkish Comp Theo Chem (TC&TC). Haziran 2025;9(5):40-53.
Chicago Yilmaz Kapancik, Canan, Özlem Demirpençe, Ali Şahin, Serkan Kapancık, Sevtap Bakır, Hande Küçük Kurtulgan, ve Burak Tüzün. “Caspase 3, Caspase 8, Caspase 9, Granzyme-B and Apaf-1 Levels in Familial Mediterranean Fever Patients Treated With Colchicine: Experimental and Theoretical Methods”. Turkish Computational and Theoretical Chemistry 9, sy. 5 (Haziran 2025): 40-53.
EndNote Yilmaz Kapancik C, Demirpençe Ö, Şahin A, Kapancık S, Bakır S, Küçük Kurtulgan H, Tüzün B (01 Haziran 2025) Caspase 3, Caspase 8, Caspase 9, Granzyme-B and Apaf-1 Levels in Familial Mediterranean Fever Patients Treated with Colchicine: Experimental and Theoretical Methods. Turkish Computational and Theoretical Chemistry 9 5 40–53.
IEEE C. Yilmaz Kapancik, Ö. Demirpençe, A. Şahin, S. Kapancık, S. Bakır, H. Küçük Kurtulgan, ve B. Tüzün, “Caspase 3, Caspase 8, Caspase 9, Granzyme-B and Apaf-1 Levels in Familial Mediterranean Fever Patients Treated with Colchicine: Experimental and Theoretical Methods”, Turkish Comp Theo Chem (TC&TC), c. 9, sy. 5, ss. 40–53, 2025.
ISNAD Yilmaz Kapancik, Canan vd. “Caspase 3, Caspase 8, Caspase 9, Granzyme-B and Apaf-1 Levels in Familial Mediterranean Fever Patients Treated With Colchicine: Experimental and Theoretical Methods”. Turkish Computational and Theoretical Chemistry 9/5 (Haziran 2025), 40-53.
JAMA Yilmaz Kapancik C, Demirpençe Ö, Şahin A, Kapancık S, Bakır S, Küçük Kurtulgan H, Tüzün B. Caspase 3, Caspase 8, Caspase 9, Granzyme-B and Apaf-1 Levels in Familial Mediterranean Fever Patients Treated with Colchicine: Experimental and Theoretical Methods. Turkish Comp Theo Chem (TC&TC). 2025;9:40–53.
MLA Yilmaz Kapancik, Canan vd. “Caspase 3, Caspase 8, Caspase 9, Granzyme-B and Apaf-1 Levels in Familial Mediterranean Fever Patients Treated With Colchicine: Experimental and Theoretical Methods”. Turkish Computational and Theoretical Chemistry, c. 9, sy. 5, 2025, ss. 40-53.
Vancouver Yilmaz Kapancik C, Demirpençe Ö, Şahin A, Kapancık S, Bakır S, Küçük Kurtulgan H, Tüzün B. Caspase 3, Caspase 8, Caspase 9, Granzyme-B and Apaf-1 Levels in Familial Mediterranean Fever Patients Treated with Colchicine: Experimental and Theoretical Methods. Turkish Comp Theo Chem (TC&TC). 2025;9(5):40-53.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)