Derleme
BibTex RIS Kaynak Göster

Unravelling the Complexity: A Review of Geometrical Modelling Techniques in Plain Weft Knitted Textile Structures

Yıl 2025, Cilt: 32 Sayı: 138, 210 - 219, 30.06.2025
https://doi.org/10.7216/teksmuh.1506139

Öz

The geometrical modelling of weft knitted structures is useful to predict fabric properties and for creating physical models. This technology allows fabric simulation to reduce the intensity of the designer and improve work efficiency. This article explores the use of parametric and mathematical techniques to capture the complexities of knitted structures. Finite element analysis (FEA) and mathematical explanations of loop formations are among the topics discussed. This study attempts to offer a thorough resource for scholars, designers, and practitioners navigating the challenging field of weft knitted textile geometrical modelling by combining ideas from various techniques. Mathematical models are based on mathematical equations, these models are easier to understand, but they are unable to forecast how cloth will behave in real time. Since parametric models provide a 3D geometrical model based on the actual values of the substrate, they provide a more realistic representation of the fabric simulation than mathematical models. By breaking down difficulties into smaller components, the Finite Element Analysis (FEA) is used to address physics and engineering problems. Things with asymmetrical structures can easily simulated by using FEA. This study provides a platform for future research and innovation in textile engineering and design by synthesizing the present level of geometrical modelling in the context of plain weft knitted structures through a thorough analysis of the existing literature

Kaynakça

  • Chamberlain, J. (1926). " Hosiery Yarn and Fabrics", Vol. II, Leicester College of Technology and Commerce.
  • Peirce, F. (1947). Geometrical principles applicable to the design of functional fabrics. Textile Research Journal, 17(3), 123-147.
  • Leaf, G., & Glaskin, A. (1955). 43—The geometry of a plain knitted loop. Journal of the Textile Institute Transactions, 46(9), T587-T605.
  • Munden, D. (1959). 26—The geometry and dimensional properties of plain-knit fabrics. Journal of the Textile Institute Transactions, 50(7), T448-T471.
  • Vassiliadis, S. G. (2007). Geometrical modelling of plain weft knitted fabrics. Indian Journal of Fiber & Textile Research, 32, 62-71.
  • Long, J., Burns, K., & Yang, J. (2011). Cloth modeling and simulation: a literature survey. Paper presented at the Digital Human Modeling: Third International Conference, ICDHM 2011, Held as Part of HCI International 2011, Orlando, FL, USA July 9-14, 2011. Proceedings 3.
  • Cirio, G., Lopez-Moreno, J., Miraut, D., & Otaduy, M. A. (2014). Yarn-level simulation of woven cloth. ACM Transactions on Graphics (TOG), 33(6), 1-11.
  • Kaldor, J. (2011). Simulating yarn-based cloth. Cornell.
  • Siddiqui, M. O. R. (2015). Geometrical modelling and numerical analysis of thermal behaviour of textile structures. Heriot-Watt University Edinburgh, Scotland.
  • Siddiqui, M. O. R., & Sun, D. (2016). Automated model generation of knitted fabric for thermal conductivity prediction using finite element analysis and its applications in composites. Journal of Industrial Textiles, 45(5), 1038-1061.
  • Shinn, W. (1955). An engineering approach to jersey fabric construction. Textile Research Journal, 25(3), 270-277.
  • De Jong, S., & Postle, R. (1977). an energy analysis of the mechanics of weft-knitted fabrics by means of optimal-control theory part i: The nature of loop-interlocking in the plain-knitted structure. Journal of the Textile Institute, 68(10), 307-315.
  • Shanahan, W., & Postle, R. (1970). A theoretical analysis of the plain-knitted structure. Textile Research Journal, 40(7), 656-665.
  • Hepworth, B., & Leaf, G. (1976). 32—The Mechanics Of An Idealized Weft-Knitted Structure. Journal of the Textile Institute, 67(7-8), 241-248.
  • S, K. (1989). In T.-W. C. a. F. K. Ko (Ed.), Textile Structural Composites (Vol. Vol.3, pp. 67). Amsterdam: Elsevier.
  • Demiroz, A., & Dias, T. (2000). A study of the graphical representation of plain-knitted structures part I: Stitch model for the graphical representation of plain-knitted structures. Journal of the Textile Institute, 91(4), 463-480.
  • Choi, K.-F., & Lo, T.-Y. (2003). An energy model of plain knitted fabric. Textile Research Journal, 73(8), 739-748.
  • Kyosev, Y., Angelova, Y., & Kovar, R. (2005). 3D modeling of plain weft knitted structures of compressible yarn. Research Journal of Textile and Apparel, 9(1), 88-97.
  • Liu, S., & Long, H. (2007). Three-dimensional computer simulation of plain weft knitted fabric. Journal of Textile Research, 28(12), 41.
  • Kurbak, A., & Soydan, A. S. (2008). Basic studies for modeling complex weft knitted fabric structures Part III: A geometrical model for 1× 1 purl fabrics. Textile Research Journal, 78(5), 377-381.
  • Mozafary, V., & Payvandy, P. (2016). Study and comparison techniques in fabric simulation using mass spring model. International Journal of Clothing Science and Technology, 28(5), 634-689.
  • Hu, H., Li, T., Ke, W., Wang, L., & Deng, Z. (2023). Simulation of Weft Knitted Fabric Using Three-DimensionalYarn Loops and Grid and Spring Mass Models. Advances in Materials Science and Engineering, 2023.
  • Bézier, P. (1972). Numerical control-mathematics and applications. Translated by AR Forrest.
  • Piegl, L. (1989). Modifying the shape of rational B-splines. Part 1: curves. Computer-Aided Design, 21(8), 509-518.
  • Sha, S., Geng, A., Gao, Y., Li, B., Jiang, X., Tao, H., . . . Hu, X. (2021). Review on the 3-D simulation for weft knitted fabric. Journal of Engineered Fibers and Fabrics, 16.
  • GÖKTEPE, Ö. (2001). Use of non-uniform rational b-splines for three-dimensional computer simulation of warp knitted structures. Turkish Journal of Engineering and Environmental Sciences, 25(4), 369-378.
  • Li, Y. L. Y., L.H.; Chen, S.Y.; Yuan, J.; Li, N.N.,. (2012). 3D modeling and simulation of fancy fabrics in weft knitting. Donghua Uni. Engl. Ed., 29(4), 351-358.
  • Adanur, S., & Vakalapudi, J. (2013). Woven fabric design and analysis in 3D virtual reality. Part 2: predicting fabric properties with the model. Journal of the Textile Institute, 104(7), 724-730.
  • Oezdemir, H., & Başer, G. (2009). Computer simulation of plain woven fabric appearance from yarn photographs. The Journal of The Textile Institute, 100(3), 282-292.
  • Durupınar, F., & Güdükbay, U. (2007). Procedural visualization of knitwear and woven cloth. Computers & Graphics, 31(5), 778-783.
  • Wadekar, P., Perumal, V., Dion, G., Kontsos, A., & Breen, D. (2020a). An optimized yarn-level geometric model for Finite Element Analysis of weft-knitted fabrics. Computer Aided Geometric Design, 80, 101883.
  • Ru, X., Wang, J. C., Peng, L., Shi, W., & Hu, X. (2023). Modeling and deformation simulation of weft knitted fabric at yarn level. Textile Research Journal, 93(11-12), 2437-2448.
  • Groller, E., Rau, R. T., & Straßer, W. (1995). Modeling and visualization of knitwear. IEEE Transactions on Visualization and Computer Graphics, 1(4), 302-310.
  • Ru, X., Zheng, S., Peng, L., & Wang, J. (2024). Yarn-level modeling and simulation of fancy weft-knitted fabric. Textile Research Journal, 00405175241235950.
  • Hamedi, S., Hasani, H., & Dibajian, S. H. (2017). Numerical simulating the flexural properties of 3D weft-knitted spacer fabric reinforced composites. Journal of composite materials, 51(13), 1887-1899.
  • Sha, S., Wei, W., Xiao, B., Sha, D., Gao, Y., Cao, R., . . . Hu, X. (2021). 3-D dynamic simulation of knitwear based on the hybrid model. Journal of Engineered Fibers and Fabrics, 16.
  • Liu, D., Christe, D., Shakibajahromi, B., Knittel, C., Castaneda, N., Breen, D., . . . Kontsos, A. (2017). On the role of material architecture in the mechanical behavior of knitted textiles. International Journal of Solids and Structures, 109, 101-111.
  • Wadekar, P., Perumal, V., Dion, G., Kontsos, A., & Breen, D. (2020b). An optimized yarn-level geometric model for Finite Element Analysis of weft-knitted fabrics. Computer Aided Geometric Design, 80.
  • Cherradi, Y., Kebir, H., Boukhriss, A., Ennamiri, H., & Benyoucef, M. (2022). Mechanical behaviour of 3D monofilament knitted fabrics: Modeling, simulation and validation. Journal of Industrial Textiles, 51(4_suppl), 5774S-5793S.
  • DL, M. (1969). Structural mechanics of fibers, yarns, and fabrics. In J. W. Hearle, P. Grosberg, & S. Backer (Eds.).

KARMAŞIKLIĞI ÇÖZÜMLEMEK: DÜZ ÖRME TEKSTİL YAPILARINDA GEOMETRİK MODELLEME ÜZERINE BİR DERLEME

Yıl 2025, Cilt: 32 Sayı: 138, 210 - 219, 30.06.2025
https://doi.org/10.7216/teksmuh.1506139

Öz

Atkılı örme yapıların geometrik modellemesi, kumaş özelliklerini tahmin etmek ve fiziksel modeller oluşturmak için yararlıdır. Bu teknoloji, kumaş simülasyonunun tasarımcının yoğunluğunu azaltmasına ve iş verimliliğini artırmasına olanak tanır. Bu makale, örme yapıların karmaşıklığını yakalamak için parametrik ve matematiksel tekniklerin kullanımını araştırmaktadır. Sonlu elemanlar analizi (FEA) ve ilmek oluşumlarının matematiksel açıklamaları tartışılan konular arasındadır. Bu çalışma, çeşitli tekniklerden fikirleri birleştirerek atkı örme tekstil geometrik modellemesinin zorlu alanında gezinen akademisyenler, tasarımcılar ve uygulayıcılar için kapsamlı bir kaynak sunmaya çalışmaktadır. Matematiksel modeller matematiksel denklemlere dayanır, bu modellerin anlaşılması daha kolaydır, ancak kumaşın gerçek zamanlı olarak nasıl davranacağını tahmin edemezler. Parametrik modeller, alt tabakanın gerçek değerlerine dayanan 3 boyutlu bir geometrik model sağladığından, kumaş simülasyonunun matematiksel modellerden daha gerçekçi bir temsilini sağlarlar. Sonlu elemanlar analizi, zorlukları daha küçük bileşenlere ayırarak fizik ve mühendislik problemlerini ele almak için kullanılır. Asimetrik yapılara sahip nesneler FEA kullanılarak kolayca simüle edilebilir. Bu çalışma, düz atkılı örme yapılar bağlamında mevcut geometrik modelleme seviyesini sentezleyerek tekstil mühendisliği ve tasarımında gelecekteki araştırma ve yenilikler için bir platform sağlamaktadır.

Kaynakça

  • Chamberlain, J. (1926). " Hosiery Yarn and Fabrics", Vol. II, Leicester College of Technology and Commerce.
  • Peirce, F. (1947). Geometrical principles applicable to the design of functional fabrics. Textile Research Journal, 17(3), 123-147.
  • Leaf, G., & Glaskin, A. (1955). 43—The geometry of a plain knitted loop. Journal of the Textile Institute Transactions, 46(9), T587-T605.
  • Munden, D. (1959). 26—The geometry and dimensional properties of plain-knit fabrics. Journal of the Textile Institute Transactions, 50(7), T448-T471.
  • Vassiliadis, S. G. (2007). Geometrical modelling of plain weft knitted fabrics. Indian Journal of Fiber & Textile Research, 32, 62-71.
  • Long, J., Burns, K., & Yang, J. (2011). Cloth modeling and simulation: a literature survey. Paper presented at the Digital Human Modeling: Third International Conference, ICDHM 2011, Held as Part of HCI International 2011, Orlando, FL, USA July 9-14, 2011. Proceedings 3.
  • Cirio, G., Lopez-Moreno, J., Miraut, D., & Otaduy, M. A. (2014). Yarn-level simulation of woven cloth. ACM Transactions on Graphics (TOG), 33(6), 1-11.
  • Kaldor, J. (2011). Simulating yarn-based cloth. Cornell.
  • Siddiqui, M. O. R. (2015). Geometrical modelling and numerical analysis of thermal behaviour of textile structures. Heriot-Watt University Edinburgh, Scotland.
  • Siddiqui, M. O. R., & Sun, D. (2016). Automated model generation of knitted fabric for thermal conductivity prediction using finite element analysis and its applications in composites. Journal of Industrial Textiles, 45(5), 1038-1061.
  • Shinn, W. (1955). An engineering approach to jersey fabric construction. Textile Research Journal, 25(3), 270-277.
  • De Jong, S., & Postle, R. (1977). an energy analysis of the mechanics of weft-knitted fabrics by means of optimal-control theory part i: The nature of loop-interlocking in the plain-knitted structure. Journal of the Textile Institute, 68(10), 307-315.
  • Shanahan, W., & Postle, R. (1970). A theoretical analysis of the plain-knitted structure. Textile Research Journal, 40(7), 656-665.
  • Hepworth, B., & Leaf, G. (1976). 32—The Mechanics Of An Idealized Weft-Knitted Structure. Journal of the Textile Institute, 67(7-8), 241-248.
  • S, K. (1989). In T.-W. C. a. F. K. Ko (Ed.), Textile Structural Composites (Vol. Vol.3, pp. 67). Amsterdam: Elsevier.
  • Demiroz, A., & Dias, T. (2000). A study of the graphical representation of plain-knitted structures part I: Stitch model for the graphical representation of plain-knitted structures. Journal of the Textile Institute, 91(4), 463-480.
  • Choi, K.-F., & Lo, T.-Y. (2003). An energy model of plain knitted fabric. Textile Research Journal, 73(8), 739-748.
  • Kyosev, Y., Angelova, Y., & Kovar, R. (2005). 3D modeling of plain weft knitted structures of compressible yarn. Research Journal of Textile and Apparel, 9(1), 88-97.
  • Liu, S., & Long, H. (2007). Three-dimensional computer simulation of plain weft knitted fabric. Journal of Textile Research, 28(12), 41.
  • Kurbak, A., & Soydan, A. S. (2008). Basic studies for modeling complex weft knitted fabric structures Part III: A geometrical model for 1× 1 purl fabrics. Textile Research Journal, 78(5), 377-381.
  • Mozafary, V., & Payvandy, P. (2016). Study and comparison techniques in fabric simulation using mass spring model. International Journal of Clothing Science and Technology, 28(5), 634-689.
  • Hu, H., Li, T., Ke, W., Wang, L., & Deng, Z. (2023). Simulation of Weft Knitted Fabric Using Three-DimensionalYarn Loops and Grid and Spring Mass Models. Advances in Materials Science and Engineering, 2023.
  • Bézier, P. (1972). Numerical control-mathematics and applications. Translated by AR Forrest.
  • Piegl, L. (1989). Modifying the shape of rational B-splines. Part 1: curves. Computer-Aided Design, 21(8), 509-518.
  • Sha, S., Geng, A., Gao, Y., Li, B., Jiang, X., Tao, H., . . . Hu, X. (2021). Review on the 3-D simulation for weft knitted fabric. Journal of Engineered Fibers and Fabrics, 16.
  • GÖKTEPE, Ö. (2001). Use of non-uniform rational b-splines for three-dimensional computer simulation of warp knitted structures. Turkish Journal of Engineering and Environmental Sciences, 25(4), 369-378.
  • Li, Y. L. Y., L.H.; Chen, S.Y.; Yuan, J.; Li, N.N.,. (2012). 3D modeling and simulation of fancy fabrics in weft knitting. Donghua Uni. Engl. Ed., 29(4), 351-358.
  • Adanur, S., & Vakalapudi, J. (2013). Woven fabric design and analysis in 3D virtual reality. Part 2: predicting fabric properties with the model. Journal of the Textile Institute, 104(7), 724-730.
  • Oezdemir, H., & Başer, G. (2009). Computer simulation of plain woven fabric appearance from yarn photographs. The Journal of The Textile Institute, 100(3), 282-292.
  • Durupınar, F., & Güdükbay, U. (2007). Procedural visualization of knitwear and woven cloth. Computers & Graphics, 31(5), 778-783.
  • Wadekar, P., Perumal, V., Dion, G., Kontsos, A., & Breen, D. (2020a). An optimized yarn-level geometric model for Finite Element Analysis of weft-knitted fabrics. Computer Aided Geometric Design, 80, 101883.
  • Ru, X., Wang, J. C., Peng, L., Shi, W., & Hu, X. (2023). Modeling and deformation simulation of weft knitted fabric at yarn level. Textile Research Journal, 93(11-12), 2437-2448.
  • Groller, E., Rau, R. T., & Straßer, W. (1995). Modeling and visualization of knitwear. IEEE Transactions on Visualization and Computer Graphics, 1(4), 302-310.
  • Ru, X., Zheng, S., Peng, L., & Wang, J. (2024). Yarn-level modeling and simulation of fancy weft-knitted fabric. Textile Research Journal, 00405175241235950.
  • Hamedi, S., Hasani, H., & Dibajian, S. H. (2017). Numerical simulating the flexural properties of 3D weft-knitted spacer fabric reinforced composites. Journal of composite materials, 51(13), 1887-1899.
  • Sha, S., Wei, W., Xiao, B., Sha, D., Gao, Y., Cao, R., . . . Hu, X. (2021). 3-D dynamic simulation of knitwear based on the hybrid model. Journal of Engineered Fibers and Fabrics, 16.
  • Liu, D., Christe, D., Shakibajahromi, B., Knittel, C., Castaneda, N., Breen, D., . . . Kontsos, A. (2017). On the role of material architecture in the mechanical behavior of knitted textiles. International Journal of Solids and Structures, 109, 101-111.
  • Wadekar, P., Perumal, V., Dion, G., Kontsos, A., & Breen, D. (2020b). An optimized yarn-level geometric model for Finite Element Analysis of weft-knitted fabrics. Computer Aided Geometric Design, 80.
  • Cherradi, Y., Kebir, H., Boukhriss, A., Ennamiri, H., & Benyoucef, M. (2022). Mechanical behaviour of 3D monofilament knitted fabrics: Modeling, simulation and validation. Journal of Industrial Textiles, 51(4_suppl), 5774S-5793S.
  • DL, M. (1969). Structural mechanics of fibers, yarns, and fabrics. In J. W. Hearle, P. Grosberg, & S. Backer (Eds.).
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tekstil Bilimi, Tekstil Bilimleri ve Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Muhammad Owais Raza Sıddıquı 0000-0002-4687-2125

Momina Zahid 0009-0005-0638-1355

Aqsa Ayaz

Sumayya Hashmi

Aiman Ahmed

Danmei Sun

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 27 Haziran 2024
Kabul Tarihi 23 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 32 Sayı: 138

Kaynak Göster

APA Sıddıquı, M. O. R., Zahid, M., Ayaz, A., Hashmi, S., vd. (2025). Unravelling the Complexity: A Review of Geometrical Modelling Techniques in Plain Weft Knitted Textile Structures. Tekstil Ve Mühendis, 32(138), 210-219. https://doi.org/10.7216/teksmuh.1506139
AMA Sıddıquı MOR, Zahid M, Ayaz A, Hashmi S, Ahmed A, Sun D. Unravelling the Complexity: A Review of Geometrical Modelling Techniques in Plain Weft Knitted Textile Structures. Tekstil ve Mühendis. Haziran 2025;32(138):210-219. doi:10.7216/teksmuh.1506139
Chicago Sıddıquı, Muhammad Owais Raza, Momina Zahid, Aqsa Ayaz, Sumayya Hashmi, Aiman Ahmed, ve Danmei Sun. “Unravelling the Complexity: A Review of Geometrical Modelling Techniques in Plain Weft Knitted Textile Structures”. Tekstil Ve Mühendis 32, sy. 138 (Haziran 2025): 210-19. https://doi.org/10.7216/teksmuh.1506139.
EndNote Sıddıquı MOR, Zahid M, Ayaz A, Hashmi S, Ahmed A, Sun D (01 Haziran 2025) Unravelling the Complexity: A Review of Geometrical Modelling Techniques in Plain Weft Knitted Textile Structures. Tekstil ve Mühendis 32 138 210–219.
IEEE M. O. R. Sıddıquı, M. Zahid, A. Ayaz, S. Hashmi, A. Ahmed, ve D. Sun, “Unravelling the Complexity: A Review of Geometrical Modelling Techniques in Plain Weft Knitted Textile Structures”, Tekstil ve Mühendis, c. 32, sy. 138, ss. 210–219, 2025, doi: 10.7216/teksmuh.1506139.
ISNAD Sıddıquı, Muhammad Owais Raza vd. “Unravelling the Complexity: A Review of Geometrical Modelling Techniques in Plain Weft Knitted Textile Structures”. Tekstil ve Mühendis 32/138 (Haziran 2025), 210-219. https://doi.org/10.7216/teksmuh.1506139.
JAMA Sıddıquı MOR, Zahid M, Ayaz A, Hashmi S, Ahmed A, Sun D. Unravelling the Complexity: A Review of Geometrical Modelling Techniques in Plain Weft Knitted Textile Structures. Tekstil ve Mühendis. 2025;32:210–219.
MLA Sıddıquı, Muhammad Owais Raza vd. “Unravelling the Complexity: A Review of Geometrical Modelling Techniques in Plain Weft Knitted Textile Structures”. Tekstil Ve Mühendis, c. 32, sy. 138, 2025, ss. 210-9, doi:10.7216/teksmuh.1506139.
Vancouver Sıddıquı MOR, Zahid M, Ayaz A, Hashmi S, Ahmed A, Sun D. Unravelling the Complexity: A Review of Geometrical Modelling Techniques in Plain Weft Knitted Textile Structures. Tekstil ve Mühendis. 2025;32(138):210-9.