Araştırma Makalesi
BibTex RIS Kaynak Göster

DEPREM TESPİTİ İÇİN KUVARS LÜMİNESANS SİNYALLERİNİN MATEMATİKSEL MODELİNİN OLUŞTURULMASI

Yıl 2025, , 60 - 83, 30.06.2025
https://doi.org/10.55071/ticaretfbd.1519713

Öz

Bu çalışma, saf bir araştırma olarak kabul edilebilir. Araştırmanın büyük bir kısmı luminesans fiziği ile ilgilidir; diğer daha küçük kısımlar ise uygulamalı matematik, bilgisayar bilimi, deprem bilimi ve gömülü sistemlerle ilgilidir. Ana fikir, deprem titreşimlerine uygulanması kritik olan luminesans ışığını algılamak için dumanlı kuvars katıların kullanılmasıdır. Ayrıca, küçük veya orta ölçekli veri setlerini çarpmada yararlı olabileceği düşünülen yeni bir algoritma (Pascal Üçgeni Çarpım Algoritması) geliştirilmiştir. Ametist malzemelerinin termolüminesans özellikleri elde edilmiştir. Pascal üçgeni çarpım algoritmasının, gömülü sistemlerde sinyal işleme açısından verimli olduğu düşünülmektedir. Bu temele dayanarak, tribolüminesans özellikler sergileyen dumanlı kuvarsın, deprem tespiti ve dozimetri dedektörleri gibi alanlarda da kullanılabileceği önerilmiştir. Bu çarpım algoritmasının deterministik doğası nedeniyle, Huffman kodlama gibi veri sıkıştırma optimizasyonlarıyla daha büyük veri setlerinde de kullanılabileceği öngörülmektedir. Bu durum, dumanlı kuvars katılarından gelen tribolüminesans sinyallerini algılayan sensör verilerinin değerlendirilmesi için bilim insanlarına çok daha fazla zaman kazandıracaktır. Bu düşünce, makaleyi yazmaktan sorumlu yazarın öngörüsüdür.

Destekleyen Kurum

Kurum yok

Teşekkür

We would like to thank to Elçin Ekdal Karalı from Ege University, Nuclear Sciences Instıtute and Arzu Ege from Manisa Celal Bayar University, Pyhiscs for giving valuable support in providing Luminescence lab and also thank to Osman Candan who is expert in geology for supplying quartz solids. Emirhan Kiraz from the Beyler Madencilik Mine Company has sent diaspore with no charge a fee.

Kaynakça

  • Bernstein D.J.(2001) Multidigit multiplication for mathematicians. Advances in Applied Mathematics. Retrieved June 1, 2024 from https://cr.yp.to/papers/m3.pdf
  • Dervişağaoğlu, O. (2020). Determination of Multiplication Algorithm with Basis on Pascal Triangle. Cankaya University Journal of Science and Engineering, 17(1), 71-79.
  • Estreicher S.K., Gibbons T.M., Bebek M.B. (2015). Thermal phonons and defects in semiconductors: The physical reason why defects reduce heat flow, and how to control it, Journal of Applied Physics 117, 112801; doi: 10.1063/1.4913826.
  • Gotze, et al. (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz - a review, Mineralogy and Petrology 71: 225-250.
  • Hatipoğlu (2010). Gem-Quality Diaspore Crystals as an Important Element of the Geoheritage of Turkey, Geoheritage (2010) 2:1–13.
  • Javed M.Y. and Nadeem A. "Data compression through adaptive Huffman coding schemes," (2000). TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119), Kuala Lumpur, Malaysia, 2000, pp. 187-190 vol.2, doi: 10.1109/TENCON.2000.888730.
  • Kibar R., Garcia-Guinea J., Çetin A., Selvi S., Karalı T., Can N. (2007). Luminescent, optical and color properties of natural rose Quartz Radiation Measurements 42, 1610 – 1617.
  • Kurum S. (2022). Magmatik Kayaçlar ve Ekonomik Önemleri, Madenler ve Değerli Taşlar Kitabı.
  • McKeever S.W.S (1983) Thermoluminescence of Solids, Cambridge University Press, 371.
  • Meakins, Clark, Dickson (1978). Thermoluminescence studies of some natural and synthetic opals, American Mineralogist, Vol. 63, pages 737-743.
  • Nur N. (2010). Ametistlerin Termolüminesans Yöntemiyle Dozimetrik Karakteristiğinin Analiz Edilmesi[Yüksek Lisans Tezi]. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana.
  • Ovalles F.O. et al. (2018). Use of an embedded system with wifi technology for domotic control of conventional environments, J. Phys.: Conf. Ser. 1126 012070.
  • Pagonis V., Kitis G., Furetta C. (2006). Numerical and Practical Exercises in Thermoluminescence, Springer.
  • Prima E C, Munifaha S S, Salam R, Aziz M H and Suryanic A T. (2017). Automatic Water Tank Filling System Controlled Using Arduino TM Based Sensor for Home Application Procedia Engineering 170 373 377.
  • Rivera T. (2012). Thermoluminescence in medical dosimetry. Applied radiation and isotopes: including data, instrumentation and methods for use in agriculture, industry and medicine, 71 Suppl, 30–34. https://doi.org/10.1016/j.apradiso.2012.04.018
  • Sheng-Hua Li, (2002). Luminescence sensitivity changes of quartz by bleaching, annealing and UV exposure,Radiation Effects and Defects in Solids, 157, 357–364.
  • Schönhage A. StrassenV. (1971) Schnelle Multiplikation großer Zahlen, Computing 7.
  • Sunta C., M., (2015). Unraveling Thermoluminescence, ISSN 0933-033X ISBN 978-81-322-1939-2 DOI 10.1007/978-81-322-1940-8 ISSN 2196-2812 (electronic) ISBN 978-81-322-1940-8 (eBook) Springer New Delhi Heidelberg New York Dordrecht London.
  • Topaksu et al (2012) Comparison of thermoluminescence (TL) and cathodoluminescence (ESEM-CL) properties between hydrothermal and metamorphic quartzes, Applied Radiation and Isotopes, 946-951.
  • Topaksu et al. (2018) UV effect on the cathodo- and thermoluminescence properties of a gemquality Cr-rich diaspore (α-AlOOH) , Applied Radiation and Isotopes,101-106.
  • Wang, A., Haskin, L.A., Cortez, E. (1998). Prototype Raman spectroscopic sensor for in situ mineral characterization on planetary surfaces. Appl. Spectrosc. 52, 477–487.
  • Wang, K. et al. (2016). Triboluminescence dominated by crystallographic orientation. Sci. Rep. 6, 26324; doi: 10.1038/srep26324.
  • Wang Z. Wang F. (2018). Triboluminescence: Materials, Properties, and Applications, DOI: http://dx.doi.org/10.5772/intechopen.81444.
  • Williams, R. T., & Fagereng, Å. (2022). The role of quartz cementation in the seismic cycle: A critical review. Reviews of Geophysics, 60, e2021RG000768. https://doi.org/10.1029/2021RG00076.
  • Uzun E. (2010). Etkileşimli Çoklu Tuzak Modelinin Sayısal Olarak Çözümlenmesi ve Gerçek Malzemelere Uygulanması, SAÜ. Fen Bilimleri Dergisi, 14 (2). 106-115.
  • Xie Y., Li Z. (2018) Triboluminescence: Recalling Interest and New Aspects, Chem 4, 943–971.
  • Xu, C. N., Watanabe, T., Akiyama, M., & Zheng, X. G. (1999). Preparation and characteristics of highly triboluminescent ZnS film. Materials Research Bulletin, 34, 1491–1500.

MATHEMATICAL MODELING OF QUARTZ LUMINESCENCE SIGNALS FOR EARTHQUAKE DETECTION

Yıl 2025, , 60 - 83, 30.06.2025
https://doi.org/10.55071/ticaretfbd.1519713

Öz

This study can be accepted pure research. Most part of this research luminescence physics and the other minor parts of the research are applied mathematics and computer science, earthquake science, embedded systems. Main idea is to use smoky quartz solids to detect luminescence light which is crucial to apply on the vibration of earthquake. Furthermore, new algorithm (Pascal’s Triangle Multiplication Algorithm) which has been thought as it could be useful on multiply smaller or medium data sets. Thermoluminescence properties of amethyst materials have been obtained. The Pascal triangle multiplication algorithm is considered to be efficient in signal processing within embedded systems. Based on this premise, it has been proposed that smoky quartz, which exhibits triboluminescent properties, could also be utilized in fields such as earthquake detection and dosimetric detectors. Due to the deterministic nature of this multiplication algorithm, it is anticipated that it can be employed in larger data sets through optimizations like data compression by guiding of Huffman coding. That will give the scientists much more time to evaluate data which comes from sensors that detect the triboluminescence from smoky quartz solids according to author who is in charge of writing this paper.

Kaynakça

  • Bernstein D.J.(2001) Multidigit multiplication for mathematicians. Advances in Applied Mathematics. Retrieved June 1, 2024 from https://cr.yp.to/papers/m3.pdf
  • Dervişağaoğlu, O. (2020). Determination of Multiplication Algorithm with Basis on Pascal Triangle. Cankaya University Journal of Science and Engineering, 17(1), 71-79.
  • Estreicher S.K., Gibbons T.M., Bebek M.B. (2015). Thermal phonons and defects in semiconductors: The physical reason why defects reduce heat flow, and how to control it, Journal of Applied Physics 117, 112801; doi: 10.1063/1.4913826.
  • Gotze, et al. (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz - a review, Mineralogy and Petrology 71: 225-250.
  • Hatipoğlu (2010). Gem-Quality Diaspore Crystals as an Important Element of the Geoheritage of Turkey, Geoheritage (2010) 2:1–13.
  • Javed M.Y. and Nadeem A. "Data compression through adaptive Huffman coding schemes," (2000). TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119), Kuala Lumpur, Malaysia, 2000, pp. 187-190 vol.2, doi: 10.1109/TENCON.2000.888730.
  • Kibar R., Garcia-Guinea J., Çetin A., Selvi S., Karalı T., Can N. (2007). Luminescent, optical and color properties of natural rose Quartz Radiation Measurements 42, 1610 – 1617.
  • Kurum S. (2022). Magmatik Kayaçlar ve Ekonomik Önemleri, Madenler ve Değerli Taşlar Kitabı.
  • McKeever S.W.S (1983) Thermoluminescence of Solids, Cambridge University Press, 371.
  • Meakins, Clark, Dickson (1978). Thermoluminescence studies of some natural and synthetic opals, American Mineralogist, Vol. 63, pages 737-743.
  • Nur N. (2010). Ametistlerin Termolüminesans Yöntemiyle Dozimetrik Karakteristiğinin Analiz Edilmesi[Yüksek Lisans Tezi]. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana.
  • Ovalles F.O. et al. (2018). Use of an embedded system with wifi technology for domotic control of conventional environments, J. Phys.: Conf. Ser. 1126 012070.
  • Pagonis V., Kitis G., Furetta C. (2006). Numerical and Practical Exercises in Thermoluminescence, Springer.
  • Prima E C, Munifaha S S, Salam R, Aziz M H and Suryanic A T. (2017). Automatic Water Tank Filling System Controlled Using Arduino TM Based Sensor for Home Application Procedia Engineering 170 373 377.
  • Rivera T. (2012). Thermoluminescence in medical dosimetry. Applied radiation and isotopes: including data, instrumentation and methods for use in agriculture, industry and medicine, 71 Suppl, 30–34. https://doi.org/10.1016/j.apradiso.2012.04.018
  • Sheng-Hua Li, (2002). Luminescence sensitivity changes of quartz by bleaching, annealing and UV exposure,Radiation Effects and Defects in Solids, 157, 357–364.
  • Schönhage A. StrassenV. (1971) Schnelle Multiplikation großer Zahlen, Computing 7.
  • Sunta C., M., (2015). Unraveling Thermoluminescence, ISSN 0933-033X ISBN 978-81-322-1939-2 DOI 10.1007/978-81-322-1940-8 ISSN 2196-2812 (electronic) ISBN 978-81-322-1940-8 (eBook) Springer New Delhi Heidelberg New York Dordrecht London.
  • Topaksu et al (2012) Comparison of thermoluminescence (TL) and cathodoluminescence (ESEM-CL) properties between hydrothermal and metamorphic quartzes, Applied Radiation and Isotopes, 946-951.
  • Topaksu et al. (2018) UV effect on the cathodo- and thermoluminescence properties of a gemquality Cr-rich diaspore (α-AlOOH) , Applied Radiation and Isotopes,101-106.
  • Wang, A., Haskin, L.A., Cortez, E. (1998). Prototype Raman spectroscopic sensor for in situ mineral characterization on planetary surfaces. Appl. Spectrosc. 52, 477–487.
  • Wang, K. et al. (2016). Triboluminescence dominated by crystallographic orientation. Sci. Rep. 6, 26324; doi: 10.1038/srep26324.
  • Wang Z. Wang F. (2018). Triboluminescence: Materials, Properties, and Applications, DOI: http://dx.doi.org/10.5772/intechopen.81444.
  • Williams, R. T., & Fagereng, Å. (2022). The role of quartz cementation in the seismic cycle: A critical review. Reviews of Geophysics, 60, e2021RG000768. https://doi.org/10.1029/2021RG00076.
  • Uzun E. (2010). Etkileşimli Çoklu Tuzak Modelinin Sayısal Olarak Çözümlenmesi ve Gerçek Malzemelere Uygulanması, SAÜ. Fen Bilimleri Dergisi, 14 (2). 106-115.
  • Xie Y., Li Z. (2018) Triboluminescence: Recalling Interest and New Aspects, Chem 4, 943–971.
  • Xu, C. N., Watanabe, T., Akiyama, M., & Zheng, X. G. (1999). Preparation and characteristics of highly triboluminescent ZnS film. Materials Research Bulletin, 34, 1491–1500.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klasik ve Fiziksel Optik, Malzeme Fiziği, Uygulamalı Matematik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Oğuzhan Dervişağaoğlu 0000-0003-3901-9238

Berkay Camgöz 0000-0003-4187-4882

Erken Görünüm Tarihi 14 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 21 Temmuz 2024
Kabul Tarihi 6 Mart 2025
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Dervişağaoğlu, O., & Camgöz, B. (2025). MATHEMATICAL MODELING OF QUARTZ LUMINESCENCE SIGNALS FOR EARTHQUAKE DETECTION. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 24(47), 60-83. https://doi.org/10.55071/ticaretfbd.1519713
AMA Dervişağaoğlu O, Camgöz B. MATHEMATICAL MODELING OF QUARTZ LUMINESCENCE SIGNALS FOR EARTHQUAKE DETECTION. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. Haziran 2025;24(47):60-83. doi:10.55071/ticaretfbd.1519713
Chicago Dervişağaoğlu, Oğuzhan, ve Berkay Camgöz. “MATHEMATICAL MODELING OF QUARTZ LUMINESCENCE SIGNALS FOR EARTHQUAKE DETECTION”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24, sy. 47 (Haziran 2025): 60-83. https://doi.org/10.55071/ticaretfbd.1519713.
EndNote Dervişağaoğlu O, Camgöz B (01 Haziran 2025) MATHEMATICAL MODELING OF QUARTZ LUMINESCENCE SIGNALS FOR EARTHQUAKE DETECTION. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24 47 60–83.
IEEE O. Dervişağaoğlu ve B. Camgöz, “MATHEMATICAL MODELING OF QUARTZ LUMINESCENCE SIGNALS FOR EARTHQUAKE DETECTION”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 24, sy. 47, ss. 60–83, 2025, doi: 10.55071/ticaretfbd.1519713.
ISNAD Dervişağaoğlu, Oğuzhan - Camgöz, Berkay. “MATHEMATICAL MODELING OF QUARTZ LUMINESCENCE SIGNALS FOR EARTHQUAKE DETECTION”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24/47 (Haziran 2025), 60-83. https://doi.org/10.55071/ticaretfbd.1519713.
JAMA Dervişağaoğlu O, Camgöz B. MATHEMATICAL MODELING OF QUARTZ LUMINESCENCE SIGNALS FOR EARTHQUAKE DETECTION. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2025;24:60–83.
MLA Dervişağaoğlu, Oğuzhan ve Berkay Camgöz. “MATHEMATICAL MODELING OF QUARTZ LUMINESCENCE SIGNALS FOR EARTHQUAKE DETECTION”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 24, sy. 47, 2025, ss. 60-83, doi:10.55071/ticaretfbd.1519713.
Vancouver Dervişağaoğlu O, Camgöz B. MATHEMATICAL MODELING OF QUARTZ LUMINESCENCE SIGNALS FOR EARTHQUAKE DETECTION. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2025;24(47):60-83.