Araştırma Makalesi
BibTex RIS Kaynak Göster

4D Printing Technology and Its Application Possibilities in Unmanned Aerial Vehicles (UAVs)

Yıl 2025, Cilt: 7 Sayı: 1, 16 - 26, 30.06.2025
https://doi.org/10.51534/tiha.1663442

Öz

4D printing technology is an innovative manufacturing method that adds the dimension of time to traditional 3D printing, enabling materials to respond to environmental stimuli (such as temperature, humidity, light, etc.) by changing shape, properties, or functionality. This study examines the fundamental principles of 4D printing in detail and explores its advantages and potential applications in the context of Unmanned Aerial Vehicles (UAVs). The foundation of 4D printing lies in the use of smart materials such as shape-memory polymers, self-healing composites, and hydrogels. These materials allow UAV components to dynamically adapt to flight conditions through pre-programmed responses. The study also comparatively discusses 4D printing techniques (FDM, SLA, DIW, SLM) and their suitability for UAV manufacturing. Additionally, current challenges such as material limitations, the complexity of multi-material printing, and high costs are addressed, and future research directions are highlighted. In conclusion, 4D printing technology holds revolutionary potential for improving UAV performance and durability. However, to fully realize this potential, advancements in material science, printing technologies, and design methods must continue.

Kaynakça

  • Aldawood, F. K. (2023). A comprehensive review of 4D printing: State of the arts, opportunities, and challenges. Paper presented at the Actuators.
  • Antezana, P. E., Municoy, S., Ostapchuk, G., Catalano, P. N., Hardy, J. G., Evelson, P. A., & Desimone, M. F. (2023). 4D printing: The development of responsive materials using 3D-printing technology. Pharmaceutics, 15(12), 2743.
  • Bai, J., & Bu, G. (2022). Progress in 4D printing technology. Journal of Advanced Manufacturing Science & Technology, 2(1), 2022001–2022001.
  • Bodaghi, M., Damanpack, A., & Liao, W. (2016). Self-expanding/shrinking structures by 4D printing. Smart Materials and Structures, 25(10), 105034.
  • Bodaghi, M., Wang, L., Zhang, F., Liu, Y., Leng, J., Xing, R., & Hoa, S. V. (2024). 4D printing roadmap. Smart Materials and Structures, 33(11), 113501.
  • Cates, R. S. (2010). Influence of crosslink density on swelling and conformation of surface-constrained poly(N-isopropylacrylamide) hydrogels. [Unpublished doctoral dissertation].
  • Chen, J., Virrueta, C., Zhang, S., Mao, C., & Wang, J. (2024). 4D printing: The spotlight for 3D printed smart materials. Materials Today.
  • Chu, C., Chung, C., & Lin, P. (2004). Influences of solution treatment on compressive properties of porous NiTi shape memory alloy with the porosity of 53.4 vol% fabricated by combustion synthesis. Journal of Materials Science, 39(15), 4949–4951.
  • Ebeid, M., & James, S. (2023). Design for 4D printing of biodegradable shape memory polymers for disposable UAV systems. Polymers, 15(17), 3562.
  • Frazier, W. E. (2014). Metal additive manufacturing: A review. Journal of Materials Engineering and Performance, 23, 1917–1928.
  • Fu, P., Li, H., Gong, J., Fan, Z., Smith, A. T., Shen, K., & McCutcheon, J. R. (2022). 4D printing of polymers: Techniques, materials, and prospects. Progress in Polymer Science, 126, 101506.
  • Ge, Q., Qi, H. J., & Dunn, M. L. (2013). Active materials by four-dimension printing. Applied Physics Letters, 103(13).
  • Gladman, A., Matsumoto, E. A., Mahadevan, L., & Lewis, J. A. (2017). Biomimetic 4D printing. Nature Materials, 15(4), 413–418.
  • Goh, G. D., Agarwala, S., Goh, G. L., Dikshit, V., Sing, S. L., & Yeong, W. Y. (2017). Additive manufacturing in unmanned aerial vehicles (UAVs): Challenges and potential. Aerospace Science and Technology, 63, 140–151.
  • Hada, T., Kanazawa, M., Iwaki, M., Arakida, T., Soeda, Y., Katheng, A., & Minakuchi, S. (2020). Effect of printing direction on the accuracy of 3D-printed dentures using stereolithography technology. Materials, 13(15), 3405.
  • Han, M.-W., Rodrigue, H., Kim, H.-I., Song, S.-H., & Ahn, S.-H. (2016). Shape memory alloy/glass fiber woven composite for soft morphing winglets of unmanned aerial vehicles. Composite Structures, 140, 202–212.
  • Heo, Y., Malakooti, M. H., & Sodano, H. A. (2016). Self-healing polymers and composites for extreme environments. Journal of Materials Chemistry A, 4(44), 17403–17411.
  • Hoa, S., Abdali, M., Jasmin, A., Radeschi, D., Prats, V., Faour, H., & Kobaissi, B. (2022). Development of a new flexible wing concept for unmanned aerial vehicle using corrugated core made by 4D printing of composites. Composite Structures, 290, 115444.
  • Huang, W. M., Yang, B., & Fu, Y. Q. (2012). Polyurethane shape memory polymers. CRC Press.
  • Joharji, L., Mishra, R. B., Alam, F., Tytov, S., Al-Modaf, F., & El-Atab, N. (2022). 4D printing: A detailed review of materials, techniques, and applications. Microelectronic Engineering, 265, 111874.
  • Khalid, M. Y., Arif, Z. U., Noroozi, R., Zolfagharian, A., & Bodaghi, M. (2022). 4D printing of shape memory polymer composites: A review on fabrication techniques, applications, and future perspectives. Journal of Manufacturing Processes, 81, 759–797.
  • Khan, M. S., Khan, S. A., Shabbir, S., Umar, M., Mohapatra, S., Khuroo, T., & Mirza, M. A. (2022). Raw materials, technology, healthcare applications, patent repository and clinical trials on 4D printing technology: An updated review. Pharmaceutics, 15(1), 116.
  • Khare, V., Sonkaria, S., Lee, G.-Y., Ahn, S.-H., & Chu, W.-S. (2017). From 3D to 4D printing – Design, material and fabrication for multi-functional multi-materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 4, 291–299.
  • Khoo, Z. X., Teoh, J. E. M., Liu, Y., Chua, C. K., Yang, S., An, J., & Yeong, W. Y. (2015). 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping, 10(3), 103–122.
  • Khorsandi, D., Fahimipour, A., Abasian, P., Saber, S. S., Seyedi, M., Ghanavati, S., & Leonova, A. (2021). 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications. Acta Biomaterialia, 122, 26–49.
  • Kruth, J.-P., Vandenbroucke, B., Van Vaerenbergh, J., & Naert, I. (2005). Rapid manufacturing of dental prostheses by means of selective laser sintering/melting. Paper presented at the 11èmes Assises Européennes du Prototypage Rapide.
  • Leist, S. K., & Zhou, J. (2016). Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual and Physical Prototyping, 11(4), 249–262.
  • Lewis, J. A. (2006). Direct ink writing of 3D functional materials. Advanced Functional Materials, 16(17), 2193–2204.
  • Li, G. (2014). Self-healing composites: Shape memory polymer-based structures. John Wiley & Sons.
  • Li, S. (2023). Review on development and application of 4D-printing technology in smart textiles. Journal of Engineered Fibers and Fabrics, 18, 15589250231177448.
  • Lin, L., Yan, J., & Qiu, S. (2024). Programming the deformation of the temperature driven spiral structure in 4D printing. Smart Materials and Structures, 33(10), 105022.
  • Liu, C., Qin, H., & Mather, P. T. (2007). Review of progress in shape-memory polymers. Journal of Materials Chemistry, 17(16), 1543–1558.
  • Mallakpour, S., Tabesh, F., & Hussain, C. M. (2021). 3D and 4D printing: From innovation to evolution. Advances in Colloid and Interface Science, 294, 102482.
  • Megdich, A., Habibi, M., & Laperrière, L. (2023). A review on 4D printing: Material structures, stimuli and additive manufacturing techniques. Materials Letters, 337, 133977.
  • Melchels, F. P., Feijen, J., & Grijpma, D. W. (2010). A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24), 6121–6130.
  • Mitchell, A., Lafont, U., Hołyńska, M., & Semprimoschnig, C. (2018). Additive manufacturing—A review of 4D printing and future applications. Additive Manufacturing, 24, 606–626.
  • Momeni, F., Liu, X., & Ni, J. (2017). A review of 4D printing. Materials & Design, 122, 42–79.
  • Norris, C. J., Meadway, G. J., O'Sullivan, M. J., Bond, I. P., & Trask, R. S. (2011). Self‐healing fibre reinforced composites via a bioinspired vasculature. Advanced Functional Materials, 21(19), 3624–3633.
  • Patil, A. N., & Sarje, S. (2021). Additive manufacturing with shape changing/memory materials: A review on 4D printing technology. Materials Today: Proceedings, 44, 1744–1749.
  • Pei, E., & Loh, G. H. (2018). Technological considerations for 4D printing: An overview. Progress in Additive Manufacturing, 3, 95–107.
  • Raina, A., Haq, M. I. U., Javaid, M., Rab, S., & Haleem, A. (2021). 4D printing for automotive industry applications. Journal of the Institution of Engineers (India): Series D, 1–9.
  • Ryan, K. R., Down, M. P., & Banks, C. E. (2021). Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications. Chemical Engineering Journal, 403, 126162.
  • Sabet, M. (2024). Unveiling advanced self-healing mechanisms in graphene polymer composites for next-generation applications in aerospace, automotive, and electronics. Polymer-Plastics Technology and Materials, 63(15), 2032–2059.
  • Sahafnejad-Mohammadi, I., Karamimoghadam, M., Zolfagharian, A., Akrami, M., & Bodaghi, M. (2022). 4D printing technology in medical engineering: A narrative review. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(6), 233.
  • Saritha, D., & Boyina, D. (2021). A concise review on 4D printing technology. Materials Today: Proceedings, 46, 692–695.
  • Shinde, S., Mane, R., Vardikar, A., Dhumal, A., & Rajput, A. (2023). 4D printing: From emergence to innovation over 3D printing. European Polymer Journal, 112356.
  • Speirs, M., Van Hooreweder, B., Van Humbeeck, J., & Kruth, J.-P. (2017). Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM: A unit cell design comparison. Journal of the Mechanical Behavior of Biomedical Materials, 70, 53–59.
  • Subeshan, B., Baddam, Y., & Asmatulu, E. (2021). Current progress of 4D-printing technology. Progress in Additive Manufacturing, 6, 495–516.
  • Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., & Lewis, J. A. (2016). Biomimetic 4D printing. Nature Materials, 15(4), 413–418.
  • Tan, Y. J., Susanto, G. J., Anwar Ali, H. P., & Tee, B. C. (2021). Progress and roadmap for intelligent self‐healing materials in autonomous robotics. Advanced Materials, 33(19), 2002800.
  • Tibbits, S. (2014). 4D printing: Multi‐material shape change. Architectural Design, 84(1), 116–121.
  • Wang, H., Zhao, J., Luo, Z., & Li, Z. (2023). Recent research developments of 4D printing technology for magnetically controlled smart materials: A review. Magnetochemistry, 9(8), 204.
  • Wu, T., Sugiarto, S., Yang, R., Sathasivam, T., Weerasinghe, U. A., Chee, P. L., & Kai, D. (2025). From 3D to 4D printing of lignin towards green materials and sustainable manufacturing. Materials Horizons.
  • Yan, S., Zhang, F., Luo, L., Wang, L., Liu, Y., & Leng, J. (2023). Shape memory polymer composites: 4D printing, smart structures, and applications. Research, 6, 0234.
  • Yi, H., & Kim, Y. (2021). Prototyping of 4D-printed self-shaping building skin in architecture: Design, fabrication, and investigation of a two-way shape memory composite (TWSMC) façade panel. Journal of Building Engineering, 43, 103076.
  • Yin, H., Akasaki, T., Sun, T. L., Nakajima, T., Kurokawa, T., Nonoyama, T., & Gong, J. P. (2013). Double network hydrogels from polyzwitterions: High mechanical strength and excellent anti-biofouling properties. Journal of Materials Chemistry B, 1(30), 3685–3693.
  • Zaharia, S.-M., Pascariu, I. S., Chicos, L.-A., Buican, G. R., Pop, M. A., Lancea, C., & Stamate, V. M. (2023). Material extrusion additive manufacturing of the composite UAV used for search-and-rescue missions. Drones, 7(10), 602.
  • Zarek, M., Layani, M., Cooperstein, I., Sachyani, E., Cohn, D., & Magdassi, S. (2015). 3D printing of shape memory polymers for flexible electronic devices. Advanced Materials, 28(22), 4449–4454.
  • Zhang, B., Zhang, W., Zhang, Z., Zhang, Y.-F., Hingorani, H., Liu, Z., & Ge, Q. (2019). Self-healing four-dimensional printing with an ultraviolet curable double-network shape memory polymer system. ACS Applied Materials & Interfaces, 11(10), 10328–10336.
  • Zhao, W., Yue, C., Liu, L., Liu, Y., & Leng, J. (2023). Research progress of shape memory polymer and 4D printing in biomedical application. Advanced Healthcare Materials, 12(16), 2201975.

4D Baskı Teknolojisi ve İnsansız Hava Araçlarındaki (İHA) Uygulama Olanakları

Yıl 2025, Cilt: 7 Sayı: 1, 16 - 26, 30.06.2025
https://doi.org/10.51534/tiha.1663442

Öz

4B baskı teknolojisi, geleneksel 3B baskıya zaman boyutunu ekleyerek malzemelerin çevresel uyaranlara (sıcaklık, nem, ışık vb.) tepki vererek şekil, özellik veya işlev değiştirmesine olanak tanıyan yenilikçi bir üretim yöntemidir. Bu çalışma, 4B baskının temel ilkelerini detaylı bir şekilde inceleyerek, İnsansız Hava Araçları (İHA'lar) bağlamında sunduğu avantajları ve uygulama potansiyellerini araştırmaktadır. 4B baskının temelini, şekil hafızalı polimerler, kendini onaran kompozitler ve hidrojeller gibi akıllı malzemelerin kullanımı oluşturur. Bu malzemeler, önceden programlanmış tepkiler sayesinde İHA bileşenlerinin uçuş koşullarına dinamik olarak uyum sağlamasını mümkün kılar. Çalışmada, 4B baskı teknikleri (FDM, SLA, DIW, SLM) ve bu tekniklerin İHA üretimindeki uygunlukları karşılaştırmalı olarak ele alınmıştır. Bunun yanı sıra, malzeme sınırlamaları, çoklu malzeme baskısının karmaşıklığı ve yüksek maliyet gibi mevcut zorluklar tartışılarak, gelecekteki araştırma yönleri vurgulanmıştır. Sonuç olarak, 4B baskı teknolojisi, İHA'ların performansını ve dayanıklılığını artırmada devrim niteliğinde bir potansiyele sahiptir. Ancak bu potansiyelin tam olarak gerçekleştirilebilmesi için malzeme bilimi, baskı teknolojileri ve tasarım yöntemlerindeki gelişmelerin sürdürülmesi gerekmektedir.

Kaynakça

  • Aldawood, F. K. (2023). A comprehensive review of 4D printing: State of the arts, opportunities, and challenges. Paper presented at the Actuators.
  • Antezana, P. E., Municoy, S., Ostapchuk, G., Catalano, P. N., Hardy, J. G., Evelson, P. A., & Desimone, M. F. (2023). 4D printing: The development of responsive materials using 3D-printing technology. Pharmaceutics, 15(12), 2743.
  • Bai, J., & Bu, G. (2022). Progress in 4D printing technology. Journal of Advanced Manufacturing Science & Technology, 2(1), 2022001–2022001.
  • Bodaghi, M., Damanpack, A., & Liao, W. (2016). Self-expanding/shrinking structures by 4D printing. Smart Materials and Structures, 25(10), 105034.
  • Bodaghi, M., Wang, L., Zhang, F., Liu, Y., Leng, J., Xing, R., & Hoa, S. V. (2024). 4D printing roadmap. Smart Materials and Structures, 33(11), 113501.
  • Cates, R. S. (2010). Influence of crosslink density on swelling and conformation of surface-constrained poly(N-isopropylacrylamide) hydrogels. [Unpublished doctoral dissertation].
  • Chen, J., Virrueta, C., Zhang, S., Mao, C., & Wang, J. (2024). 4D printing: The spotlight for 3D printed smart materials. Materials Today.
  • Chu, C., Chung, C., & Lin, P. (2004). Influences of solution treatment on compressive properties of porous NiTi shape memory alloy with the porosity of 53.4 vol% fabricated by combustion synthesis. Journal of Materials Science, 39(15), 4949–4951.
  • Ebeid, M., & James, S. (2023). Design for 4D printing of biodegradable shape memory polymers for disposable UAV systems. Polymers, 15(17), 3562.
  • Frazier, W. E. (2014). Metal additive manufacturing: A review. Journal of Materials Engineering and Performance, 23, 1917–1928.
  • Fu, P., Li, H., Gong, J., Fan, Z., Smith, A. T., Shen, K., & McCutcheon, J. R. (2022). 4D printing of polymers: Techniques, materials, and prospects. Progress in Polymer Science, 126, 101506.
  • Ge, Q., Qi, H. J., & Dunn, M. L. (2013). Active materials by four-dimension printing. Applied Physics Letters, 103(13).
  • Gladman, A., Matsumoto, E. A., Mahadevan, L., & Lewis, J. A. (2017). Biomimetic 4D printing. Nature Materials, 15(4), 413–418.
  • Goh, G. D., Agarwala, S., Goh, G. L., Dikshit, V., Sing, S. L., & Yeong, W. Y. (2017). Additive manufacturing in unmanned aerial vehicles (UAVs): Challenges and potential. Aerospace Science and Technology, 63, 140–151.
  • Hada, T., Kanazawa, M., Iwaki, M., Arakida, T., Soeda, Y., Katheng, A., & Minakuchi, S. (2020). Effect of printing direction on the accuracy of 3D-printed dentures using stereolithography technology. Materials, 13(15), 3405.
  • Han, M.-W., Rodrigue, H., Kim, H.-I., Song, S.-H., & Ahn, S.-H. (2016). Shape memory alloy/glass fiber woven composite for soft morphing winglets of unmanned aerial vehicles. Composite Structures, 140, 202–212.
  • Heo, Y., Malakooti, M. H., & Sodano, H. A. (2016). Self-healing polymers and composites for extreme environments. Journal of Materials Chemistry A, 4(44), 17403–17411.
  • Hoa, S., Abdali, M., Jasmin, A., Radeschi, D., Prats, V., Faour, H., & Kobaissi, B. (2022). Development of a new flexible wing concept for unmanned aerial vehicle using corrugated core made by 4D printing of composites. Composite Structures, 290, 115444.
  • Huang, W. M., Yang, B., & Fu, Y. Q. (2012). Polyurethane shape memory polymers. CRC Press.
  • Joharji, L., Mishra, R. B., Alam, F., Tytov, S., Al-Modaf, F., & El-Atab, N. (2022). 4D printing: A detailed review of materials, techniques, and applications. Microelectronic Engineering, 265, 111874.
  • Khalid, M. Y., Arif, Z. U., Noroozi, R., Zolfagharian, A., & Bodaghi, M. (2022). 4D printing of shape memory polymer composites: A review on fabrication techniques, applications, and future perspectives. Journal of Manufacturing Processes, 81, 759–797.
  • Khan, M. S., Khan, S. A., Shabbir, S., Umar, M., Mohapatra, S., Khuroo, T., & Mirza, M. A. (2022). Raw materials, technology, healthcare applications, patent repository and clinical trials on 4D printing technology: An updated review. Pharmaceutics, 15(1), 116.
  • Khare, V., Sonkaria, S., Lee, G.-Y., Ahn, S.-H., & Chu, W.-S. (2017). From 3D to 4D printing – Design, material and fabrication for multi-functional multi-materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 4, 291–299.
  • Khoo, Z. X., Teoh, J. E. M., Liu, Y., Chua, C. K., Yang, S., An, J., & Yeong, W. Y. (2015). 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping, 10(3), 103–122.
  • Khorsandi, D., Fahimipour, A., Abasian, P., Saber, S. S., Seyedi, M., Ghanavati, S., & Leonova, A. (2021). 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications. Acta Biomaterialia, 122, 26–49.
  • Kruth, J.-P., Vandenbroucke, B., Van Vaerenbergh, J., & Naert, I. (2005). Rapid manufacturing of dental prostheses by means of selective laser sintering/melting. Paper presented at the 11èmes Assises Européennes du Prototypage Rapide.
  • Leist, S. K., & Zhou, J. (2016). Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual and Physical Prototyping, 11(4), 249–262.
  • Lewis, J. A. (2006). Direct ink writing of 3D functional materials. Advanced Functional Materials, 16(17), 2193–2204.
  • Li, G. (2014). Self-healing composites: Shape memory polymer-based structures. John Wiley & Sons.
  • Li, S. (2023). Review on development and application of 4D-printing technology in smart textiles. Journal of Engineered Fibers and Fabrics, 18, 15589250231177448.
  • Lin, L., Yan, J., & Qiu, S. (2024). Programming the deformation of the temperature driven spiral structure in 4D printing. Smart Materials and Structures, 33(10), 105022.
  • Liu, C., Qin, H., & Mather, P. T. (2007). Review of progress in shape-memory polymers. Journal of Materials Chemistry, 17(16), 1543–1558.
  • Mallakpour, S., Tabesh, F., & Hussain, C. M. (2021). 3D and 4D printing: From innovation to evolution. Advances in Colloid and Interface Science, 294, 102482.
  • Megdich, A., Habibi, M., & Laperrière, L. (2023). A review on 4D printing: Material structures, stimuli and additive manufacturing techniques. Materials Letters, 337, 133977.
  • Melchels, F. P., Feijen, J., & Grijpma, D. W. (2010). A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24), 6121–6130.
  • Mitchell, A., Lafont, U., Hołyńska, M., & Semprimoschnig, C. (2018). Additive manufacturing—A review of 4D printing and future applications. Additive Manufacturing, 24, 606–626.
  • Momeni, F., Liu, X., & Ni, J. (2017). A review of 4D printing. Materials & Design, 122, 42–79.
  • Norris, C. J., Meadway, G. J., O'Sullivan, M. J., Bond, I. P., & Trask, R. S. (2011). Self‐healing fibre reinforced composites via a bioinspired vasculature. Advanced Functional Materials, 21(19), 3624–3633.
  • Patil, A. N., & Sarje, S. (2021). Additive manufacturing with shape changing/memory materials: A review on 4D printing technology. Materials Today: Proceedings, 44, 1744–1749.
  • Pei, E., & Loh, G. H. (2018). Technological considerations for 4D printing: An overview. Progress in Additive Manufacturing, 3, 95–107.
  • Raina, A., Haq, M. I. U., Javaid, M., Rab, S., & Haleem, A. (2021). 4D printing for automotive industry applications. Journal of the Institution of Engineers (India): Series D, 1–9.
  • Ryan, K. R., Down, M. P., & Banks, C. E. (2021). Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications. Chemical Engineering Journal, 403, 126162.
  • Sabet, M. (2024). Unveiling advanced self-healing mechanisms in graphene polymer composites for next-generation applications in aerospace, automotive, and electronics. Polymer-Plastics Technology and Materials, 63(15), 2032–2059.
  • Sahafnejad-Mohammadi, I., Karamimoghadam, M., Zolfagharian, A., Akrami, M., & Bodaghi, M. (2022). 4D printing technology in medical engineering: A narrative review. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(6), 233.
  • Saritha, D., & Boyina, D. (2021). A concise review on 4D printing technology. Materials Today: Proceedings, 46, 692–695.
  • Shinde, S., Mane, R., Vardikar, A., Dhumal, A., & Rajput, A. (2023). 4D printing: From emergence to innovation over 3D printing. European Polymer Journal, 112356.
  • Speirs, M., Van Hooreweder, B., Van Humbeeck, J., & Kruth, J.-P. (2017). Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM: A unit cell design comparison. Journal of the Mechanical Behavior of Biomedical Materials, 70, 53–59.
  • Subeshan, B., Baddam, Y., & Asmatulu, E. (2021). Current progress of 4D-printing technology. Progress in Additive Manufacturing, 6, 495–516.
  • Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., & Lewis, J. A. (2016). Biomimetic 4D printing. Nature Materials, 15(4), 413–418.
  • Tan, Y. J., Susanto, G. J., Anwar Ali, H. P., & Tee, B. C. (2021). Progress and roadmap for intelligent self‐healing materials in autonomous robotics. Advanced Materials, 33(19), 2002800.
  • Tibbits, S. (2014). 4D printing: Multi‐material shape change. Architectural Design, 84(1), 116–121.
  • Wang, H., Zhao, J., Luo, Z., & Li, Z. (2023). Recent research developments of 4D printing technology for magnetically controlled smart materials: A review. Magnetochemistry, 9(8), 204.
  • Wu, T., Sugiarto, S., Yang, R., Sathasivam, T., Weerasinghe, U. A., Chee, P. L., & Kai, D. (2025). From 3D to 4D printing of lignin towards green materials and sustainable manufacturing. Materials Horizons.
  • Yan, S., Zhang, F., Luo, L., Wang, L., Liu, Y., & Leng, J. (2023). Shape memory polymer composites: 4D printing, smart structures, and applications. Research, 6, 0234.
  • Yi, H., & Kim, Y. (2021). Prototyping of 4D-printed self-shaping building skin in architecture: Design, fabrication, and investigation of a two-way shape memory composite (TWSMC) façade panel. Journal of Building Engineering, 43, 103076.
  • Yin, H., Akasaki, T., Sun, T. L., Nakajima, T., Kurokawa, T., Nonoyama, T., & Gong, J. P. (2013). Double network hydrogels from polyzwitterions: High mechanical strength and excellent anti-biofouling properties. Journal of Materials Chemistry B, 1(30), 3685–3693.
  • Zaharia, S.-M., Pascariu, I. S., Chicos, L.-A., Buican, G. R., Pop, M. A., Lancea, C., & Stamate, V. M. (2023). Material extrusion additive manufacturing of the composite UAV used for search-and-rescue missions. Drones, 7(10), 602.
  • Zarek, M., Layani, M., Cooperstein, I., Sachyani, E., Cohn, D., & Magdassi, S. (2015). 3D printing of shape memory polymers for flexible electronic devices. Advanced Materials, 28(22), 4449–4454.
  • Zhang, B., Zhang, W., Zhang, Z., Zhang, Y.-F., Hingorani, H., Liu, Z., & Ge, Q. (2019). Self-healing four-dimensional printing with an ultraviolet curable double-network shape memory polymer system. ACS Applied Materials & Interfaces, 11(10), 10328–10336.
  • Zhao, W., Yue, C., Liu, L., Liu, Y., & Leng, J. (2023). Research progress of shape memory polymer and 4D printing in biomedical application. Advanced Healthcare Materials, 12(16), 2201975.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Dijital Elektronik Cihazlar
Bölüm Araştırma Makaleleri [tr] Research Articles [en]
Yazarlar

Ece Kalay 0000-0003-2470-7791

İskender Özkul 0000-0003-4255-0564

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 22 Mart 2025
Kabul Tarihi 28 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 1

Kaynak Göster

APA Kalay, E., & Özkul, İ. (2025). 4D Printing Technology and Its Application Possibilities in Unmanned Aerial Vehicles (UAVs). Türkiye İnsansız Hava Araçları Dergisi, 7(1), 16-26. https://doi.org/10.51534/tiha.1663442
AMA Kalay E, Özkul İ. 4D Printing Technology and Its Application Possibilities in Unmanned Aerial Vehicles (UAVs). tiha. Haziran 2025;7(1):16-26. doi:10.51534/tiha.1663442
Chicago Kalay, Ece, ve İskender Özkul. “4D Printing Technology and Its Application Possibilities in Unmanned Aerial Vehicles (UAVs)”. Türkiye İnsansız Hava Araçları Dergisi 7, sy. 1 (Haziran 2025): 16-26. https://doi.org/10.51534/tiha.1663442.
EndNote Kalay E, Özkul İ (01 Haziran 2025) 4D Printing Technology and Its Application Possibilities in Unmanned Aerial Vehicles (UAVs). Türkiye İnsansız Hava Araçları Dergisi 7 1 16–26.
IEEE E. Kalay ve İ. Özkul, “4D Printing Technology and Its Application Possibilities in Unmanned Aerial Vehicles (UAVs)”, tiha, c. 7, sy. 1, ss. 16–26, 2025, doi: 10.51534/tiha.1663442.
ISNAD Kalay, Ece - Özkul, İskender. “4D Printing Technology and Its Application Possibilities in Unmanned Aerial Vehicles (UAVs)”. Türkiye İnsansız Hava Araçları Dergisi 7/1 (Haziran 2025), 16-26. https://doi.org/10.51534/tiha.1663442.
JAMA Kalay E, Özkul İ. 4D Printing Technology and Its Application Possibilities in Unmanned Aerial Vehicles (UAVs). tiha. 2025;7:16–26.
MLA Kalay, Ece ve İskender Özkul. “4D Printing Technology and Its Application Possibilities in Unmanned Aerial Vehicles (UAVs)”. Türkiye İnsansız Hava Araçları Dergisi, c. 7, sy. 1, 2025, ss. 16-26, doi:10.51534/tiha.1663442.
Vancouver Kalay E, Özkul İ. 4D Printing Technology and Its Application Possibilities in Unmanned Aerial Vehicles (UAVs). tiha. 2025;7(1):16-2.