We will hereby introduce a new generalization of the Schurer, Stancu, Deo, and Izgi operators which are the modifications of the Bernstein polynomials and calculate the rate of approximation for the new operator with the help of the continuity module. Then, by using graphs and numerical values, we will demonstrate that the new general operator yields better results than the above classical operators which can be seen as the basis of the approximation theory.
Approximation properties modulus of continuity Bernstein operators
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 30 Haziran 2021 |
Yayımlandığı Sayı | Yıl 2021 Cilt: 13 Sayı: 1 |