Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 16 Sayı: 1, 64 - 69, 30.06.2024
https://doi.org/10.47000/tjmcs.1391969

Öz

Kaynakça

  • Abbas, M., Anjum, R., Ismail, N., Approximation of fixed points of enriched asymptotically nonexpansive mappings in CAT(0) spaces, Rend. Circ. Mat. Palermo, II. Ser, 72(2023), 2409–2427.
  • Banach, S., Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales, Fund. Math., 3(1922), 133–181.
  • Berinde, V., Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, Carpathian J. Math., 35(2019), 293–304.
  • Berinde, V., P˘acurar, M., Approximating fixed points of enriched contractions in Banach spaces, J. Fixed Point Theory Appl., 22(2)(2020).
  • Berinde, V., P˘acurar, M., Kannan’s fixed point approximation for solving split feasibility and variational inequality problems, J. Comput. Appl. Math., 386(2021).
  • Berinde, V., P˘acurar, M., Approximating fixed points of enriched Chatterjea contractions by Krasnoselskij iterative algorithm in Banach spaces, J. Fixed Point Theory Appl., 23(2021), 66.
  • Berinde, V., Pa˘curar, M., Fixed point theorems for enriched C´ iric´-Reich-Rus contractions in Banach spaces and convex metric spaces, Carpathian J. Math., 37(2021), 173–184.
  • Berinde, V., P˘acurar, M. Fixed points theorems for unsaturated and saturated classes of contractive mappings in Banach spaces, Symmetry, 13(2021), 713.
  • Chatterjea, S.K., Fixed-point theorems, C. R. Acad. Bulgare Sci., 25(1972), 727–730.
  • Ciric, L.B., A generalization of Banach’s contraction principle, Proc. Am. Math. Soc., 45(1974), 267–273.
  • Kannan, R., Some results on fixed points, Bull. Calcutta Math. Soc., 60(1968), 71–76.
  • Popescu, O., Fixed point theorem in metric spaces, Bull. of Transilvania Univ., 50(2008), 479–482.
  • Reich, S., Some remarks concerning contraction mappings, Canad. Math. Bull., 14(1971), 121–124.
  • Rus, I.A., Some fixed point theorems in metric spaces, Rend. Istit. Mat. Univ. Trieste, 3(1971), 169–172.
  • Shukla, R., Panicker, R., Approximating fixed points of enriched nonexpansive mappings in geodesic spaces, Journal of Function Spaces, (2022).

Enriched P-Contractions on Normed Space and a Fixed Point Result

Yıl 2024, Cilt: 16 Sayı: 1, 64 - 69, 30.06.2024
https://doi.org/10.47000/tjmcs.1391969

Öz

This paper introduces the concept of enriched $P$-contractions on linear
normed spaces, and provides illustrative examples that highlight the
differences between this new concept and its previous counterparts. It then
gives a research result regarding the existence and uniqueness of the fixed
point of this innovative type of contractions in Banach spaces. Finally,
reminds us of the concept of enriched nonexpansive mappings and also offers
a simple fixed point theorem for such mappings.

Kaynakça

  • Abbas, M., Anjum, R., Ismail, N., Approximation of fixed points of enriched asymptotically nonexpansive mappings in CAT(0) spaces, Rend. Circ. Mat. Palermo, II. Ser, 72(2023), 2409–2427.
  • Banach, S., Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales, Fund. Math., 3(1922), 133–181.
  • Berinde, V., Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, Carpathian J. Math., 35(2019), 293–304.
  • Berinde, V., P˘acurar, M., Approximating fixed points of enriched contractions in Banach spaces, J. Fixed Point Theory Appl., 22(2)(2020).
  • Berinde, V., P˘acurar, M., Kannan’s fixed point approximation for solving split feasibility and variational inequality problems, J. Comput. Appl. Math., 386(2021).
  • Berinde, V., P˘acurar, M., Approximating fixed points of enriched Chatterjea contractions by Krasnoselskij iterative algorithm in Banach spaces, J. Fixed Point Theory Appl., 23(2021), 66.
  • Berinde, V., Pa˘curar, M., Fixed point theorems for enriched C´ iric´-Reich-Rus contractions in Banach spaces and convex metric spaces, Carpathian J. Math., 37(2021), 173–184.
  • Berinde, V., P˘acurar, M. Fixed points theorems for unsaturated and saturated classes of contractive mappings in Banach spaces, Symmetry, 13(2021), 713.
  • Chatterjea, S.K., Fixed-point theorems, C. R. Acad. Bulgare Sci., 25(1972), 727–730.
  • Ciric, L.B., A generalization of Banach’s contraction principle, Proc. Am. Math. Soc., 45(1974), 267–273.
  • Kannan, R., Some results on fixed points, Bull. Calcutta Math. Soc., 60(1968), 71–76.
  • Popescu, O., Fixed point theorem in metric spaces, Bull. of Transilvania Univ., 50(2008), 479–482.
  • Reich, S., Some remarks concerning contraction mappings, Canad. Math. Bull., 14(1971), 121–124.
  • Rus, I.A., Some fixed point theorems in metric spaces, Rend. Istit. Mat. Univ. Trieste, 3(1971), 169–172.
  • Shukla, R., Panicker, R., Approximating fixed points of enriched nonexpansive mappings in geodesic spaces, Journal of Function Spaces, (2022).
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Topoloji
Bölüm Makaleler
Yazarlar

İshak Altun 0000-0002-7967-0554

Hatice Aslan Hançer 0000-0001-5928-9599

Merve Doğan Ateş 0000-0002-7362-4880

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 16 Kasım 2023
Kabul Tarihi 2 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 16 Sayı: 1

Kaynak Göster

APA Altun, İ., Aslan Hançer, H., & Ateş, M. D. (2024). Enriched P-Contractions on Normed Space and a Fixed Point Result. Turkish Journal of Mathematics and Computer Science, 16(1), 64-69. https://doi.org/10.47000/tjmcs.1391969
AMA Altun İ, Aslan Hançer H, Ateş MD. Enriched P-Contractions on Normed Space and a Fixed Point Result. TJMCS. Haziran 2024;16(1):64-69. doi:10.47000/tjmcs.1391969
Chicago Altun, İshak, Hatice Aslan Hançer, ve Merve Doğan Ateş. “Enriched P-Contractions on Normed Space and a Fixed Point Result”. Turkish Journal of Mathematics and Computer Science 16, sy. 1 (Haziran 2024): 64-69. https://doi.org/10.47000/tjmcs.1391969.
EndNote Altun İ, Aslan Hançer H, Ateş MD (01 Haziran 2024) Enriched P-Contractions on Normed Space and a Fixed Point Result. Turkish Journal of Mathematics and Computer Science 16 1 64–69.
IEEE İ. Altun, H. Aslan Hançer, ve M. D. Ateş, “Enriched P-Contractions on Normed Space and a Fixed Point Result”, TJMCS, c. 16, sy. 1, ss. 64–69, 2024, doi: 10.47000/tjmcs.1391969.
ISNAD Altun, İshak vd. “Enriched P-Contractions on Normed Space and a Fixed Point Result”. Turkish Journal of Mathematics and Computer Science 16/1 (Haziran 2024), 64-69. https://doi.org/10.47000/tjmcs.1391969.
JAMA Altun İ, Aslan Hançer H, Ateş MD. Enriched P-Contractions on Normed Space and a Fixed Point Result. TJMCS. 2024;16:64–69.
MLA Altun, İshak vd. “Enriched P-Contractions on Normed Space and a Fixed Point Result”. Turkish Journal of Mathematics and Computer Science, c. 16, sy. 1, 2024, ss. 64-69, doi:10.47000/tjmcs.1391969.
Vancouver Altun İ, Aslan Hançer H, Ateş MD. Enriched P-Contractions on Normed Space and a Fixed Point Result. TJMCS. 2024;16(1):64-9.