Araştırma Makalesi
BibTex RIS Kaynak Göster

Complex Eigenvalue Analysis of a Linear Pencil: An Experimental Study

Yıl 2024, Cilt: 16 Sayı: 2, 518 - 528, 31.12.2024
https://doi.org/10.47000/tjmcs.1349180

Öz

This paper is concerned with a finite-dimensional example of a linear pencil which leads to a class of non-self-adjoint matrices. We consider the linear pencil $H_c-\lambda L$, where $H_c$ is a tri-diagonal matrix with a constant parameter $c$ on the main diagonal and off-diagonal entries equal to one, and $L$ is a diagonal matrix whose elements decrease linearly from one to minus one. In general, the spectra of operator polynomials may contain non-real eigenvalues as well as real eigenvalues. Nevertheless, they exhibit certain patterns. Our aim in this research is to carry out a variety of numerical investigation on the eigenvalues so as to understand the eigenvalue behaviour of such pencils from different points of view. In accordance with our numerical findings, a series of conjectures are offered and various heuristics has been discussed.

Kaynakça

  • Bagarello, F., Gazeau, J.P., Szafraniec, F.H., Znojil, M., Non-selfadjoint Operators in Quantum Physics, John Wiley & Sons, Inc., Hoboken, NJ, 2015.
  • Bai, Z., Day, D., Demmel, J., Dongarra, J., A test matrix collection for non-Hermitian eigenvalue problems, Technical Report CS-97-355, (1996).
  • Bora, S., Mehrmann, V., Linear perturbation theory for structured matrix pencils arising in control theory, SIAM J. Matrix Anal. Appl. 28(2006), 148–169.
  • Cullum, J., Kerner, W., Willoughby, R., A generalized nonsymmetric Lanczos procedure, Comput. Phys. Commun., 53(1989), 19–48.
  • Davies, E.B., Levitin, M., Spectra of a class of non-self-adjoint matrices, Linear Algebra Appl., 448(2014), 55–84.
  • Elton, D.M., Levitin, M., Polterovich, I., Eigenvalues of a one-dimensional Dirac operator pencil, Ann. Henri Poincar´e, 15(2014), 2321–2377.
  • Jeribi, A., Moalla, N., Yengui, S., S -essential spectra and application to an example of transport operators, Math. Methods Appl. Sci., 37(2014), 2341–2353.
  • Levitin, M., Öztürk, H.M., A two-parameter eigenvalue problem for a class of block-operator matrices, Oper. Theory Adv. Appl., 268(2018), 367–380.
  • Levitin, M., Seri, M., Accumulation of complex eigenvalues of an indefinite Sturm-Liouville operator with a shifted Coulomb potential, Oper. Matrices, 10(2016), 223–245.
  • Öztürk, H.M., On a conjecture of Davies and Levitin, Math. Methods Appl. Sci., 46(2023), 4391–4412.
  • Markus, A.S., Introduction to the Spectral Theory of Polynomial Operator Pencils. Transl. from the Russian by H.H. McFaden, American Mathematical Society, 1988.
  • Möller, M., Pivovarchik, V., Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and Their Applications, Birkh¨auser/Springer, Cham, 2015.
  • Tisseur, F., Meerbergen, K., The quadratic eigenvalue problem, SIAM Rev., 43(2001), 235–286.
  • Tretter, C., Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, London, 2008.
Yıl 2024, Cilt: 16 Sayı: 2, 518 - 528, 31.12.2024
https://doi.org/10.47000/tjmcs.1349180

Öz

Kaynakça

  • Bagarello, F., Gazeau, J.P., Szafraniec, F.H., Znojil, M., Non-selfadjoint Operators in Quantum Physics, John Wiley & Sons, Inc., Hoboken, NJ, 2015.
  • Bai, Z., Day, D., Demmel, J., Dongarra, J., A test matrix collection for non-Hermitian eigenvalue problems, Technical Report CS-97-355, (1996).
  • Bora, S., Mehrmann, V., Linear perturbation theory for structured matrix pencils arising in control theory, SIAM J. Matrix Anal. Appl. 28(2006), 148–169.
  • Cullum, J., Kerner, W., Willoughby, R., A generalized nonsymmetric Lanczos procedure, Comput. Phys. Commun., 53(1989), 19–48.
  • Davies, E.B., Levitin, M., Spectra of a class of non-self-adjoint matrices, Linear Algebra Appl., 448(2014), 55–84.
  • Elton, D.M., Levitin, M., Polterovich, I., Eigenvalues of a one-dimensional Dirac operator pencil, Ann. Henri Poincar´e, 15(2014), 2321–2377.
  • Jeribi, A., Moalla, N., Yengui, S., S -essential spectra and application to an example of transport operators, Math. Methods Appl. Sci., 37(2014), 2341–2353.
  • Levitin, M., Öztürk, H.M., A two-parameter eigenvalue problem for a class of block-operator matrices, Oper. Theory Adv. Appl., 268(2018), 367–380.
  • Levitin, M., Seri, M., Accumulation of complex eigenvalues of an indefinite Sturm-Liouville operator with a shifted Coulomb potential, Oper. Matrices, 10(2016), 223–245.
  • Öztürk, H.M., On a conjecture of Davies and Levitin, Math. Methods Appl. Sci., 46(2023), 4391–4412.
  • Markus, A.S., Introduction to the Spectral Theory of Polynomial Operator Pencils. Transl. from the Russian by H.H. McFaden, American Mathematical Society, 1988.
  • Möller, M., Pivovarchik, V., Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and Their Applications, Birkh¨auser/Springer, Cham, 2015.
  • Tisseur, F., Meerbergen, K., The quadratic eigenvalue problem, SIAM Rev., 43(2001), 235–286.
  • Tretter, C., Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, London, 2008.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Deneysel Analiz, Sayısal ve Hesaplamalı Matematik (Diğer), Operatör Cebirleri ve Fonksiyonel Analiz
Bölüm Makaleler
Yazarlar

Hasen Mekki Öztürk 0000-0002-4524-651X

Yayımlanma Tarihi 31 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 16 Sayı: 2

Kaynak Göster

APA Öztürk, H. M. (2024). Complex Eigenvalue Analysis of a Linear Pencil: An Experimental Study. Turkish Journal of Mathematics and Computer Science, 16(2), 518-528. https://doi.org/10.47000/tjmcs.1349180
AMA Öztürk HM. Complex Eigenvalue Analysis of a Linear Pencil: An Experimental Study. TJMCS. Aralık 2024;16(2):518-528. doi:10.47000/tjmcs.1349180
Chicago Öztürk, Hasen Mekki. “Complex Eigenvalue Analysis of a Linear Pencil: An Experimental Study”. Turkish Journal of Mathematics and Computer Science 16, sy. 2 (Aralık 2024): 518-28. https://doi.org/10.47000/tjmcs.1349180.
EndNote Öztürk HM (01 Aralık 2024) Complex Eigenvalue Analysis of a Linear Pencil: An Experimental Study. Turkish Journal of Mathematics and Computer Science 16 2 518–528.
IEEE H. M. Öztürk, “Complex Eigenvalue Analysis of a Linear Pencil: An Experimental Study”, TJMCS, c. 16, sy. 2, ss. 518–528, 2024, doi: 10.47000/tjmcs.1349180.
ISNAD Öztürk, Hasen Mekki. “Complex Eigenvalue Analysis of a Linear Pencil: An Experimental Study”. Turkish Journal of Mathematics and Computer Science 16/2 (Aralık 2024), 518-528. https://doi.org/10.47000/tjmcs.1349180.
JAMA Öztürk HM. Complex Eigenvalue Analysis of a Linear Pencil: An Experimental Study. TJMCS. 2024;16:518–528.
MLA Öztürk, Hasen Mekki. “Complex Eigenvalue Analysis of a Linear Pencil: An Experimental Study”. Turkish Journal of Mathematics and Computer Science, c. 16, sy. 2, 2024, ss. 518-2, doi:10.47000/tjmcs.1349180.
Vancouver Öztürk HM. Complex Eigenvalue Analysis of a Linear Pencil: An Experimental Study. TJMCS. 2024;16(2):518-2.