This paper investigates position vectors of arbitrary curves in isotropic 3-space (denoted by I^3). We first establish the relationship between a curve’s position vector and the Frenet frame. Then, we derive a natural representation of any curve’s position vector using curvature and torsion. Furthermore, we define various curves within isotropic space, including straight lines, plane curves, helices, general helices, Salkowski curves, and anti-Salkowski curves. Finally, graphical illustrations accompany illustrative examples to elucidate the discussed concepts.
Birincil Dil | İngilizce |
---|---|
Konular | Cebirsel ve Diferansiyel Geometri |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 31 Aralık 2024 |
Gönderilme Tarihi | 26 Mayıs 2024 |
Kabul Tarihi | 15 Ekim 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 16 Sayı: 2 |