In this research, we present the notion of statistical compactness restricted up to order $\alpha$, where $\alpha \in (0,1]$. There exist statistically compact spaces that are not compact. So the parameter $\alpha$ became the measurement of non compactness. Additionally, we looked for the continued existence of order $\alpha$ statistical compactness under open continuous surjection and sub-space topology. A finite intersection-like characterization for $\alpha$ statistical compactness has also been established.
Countable compactness natural density finite intersection property.
NA
NA
Birincil Dil | İngilizce |
---|---|
Konular | Topoloji |
Bölüm | Makaleler |
Yazarlar | |
Proje Numarası | NA |
Yayımlanma Tarihi | 31 Aralık 2024 |
Gönderilme Tarihi | 3 Eylül 2024 |
Kabul Tarihi | 12 Aralık 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 16 Sayı: 2 |