Araştırma Makalesi
BibTex RIS Kaynak Göster

Sefer Bazlı Emisyon Profilleri ve Deniz Yakıtı Olarak LNG'nin Aynı Hat Rotasında Çalışan Konteyner Gemilerinin Çevresel Performansına Etkisi

Yıl 2025, Erken Görünüm Makaleler, 1 - 16
https://doi.org/10.52998/trjmms.1669674

Öz

Denizcilik sektöründeki emisyonların azaltılmasına yönelik artan uluslararası baskı, denizcilik sektöründe daha çevreci sevk sistemlerinin arayışını yoğunlaştırmaktadır. Transatlantik rotalarda çalışan altı konteyner gemisine odaklanan bu araştırma, geleneksel yakıtların (HFO ve MGO) emisyon profilleri ile alternatif yakıtlardan Sıvılaştırılmış Doğal Gaz (LNG) ile karşılaştırmakta ve bu kapsamda 120 adet sefer verisi analiz edilmektedir. Geleneksel yakıtların kullanıldığı günlük CO2 emisyonları ortalama 111,3 ton olurken, NOX ve SOX emisyonları sırasıyla 2659,9 kg/gün ve 1690,4 kg/gün olarak hesaplanmıştır. LNG kullanımı genel zararlı emisyon yoğunluğunu iyileştirirken CO2'yi %32'ye kadar, NOX'u %86'ya kadar, SOX'u %99,95'e kadar ve partikül maddeyi %90'ın üzerinde önemli ölçüde azaltmıştır. Buna karşın LNG kullanımı, CH4 emisyonları ortalama 354,2 kg/gün ile önemli ölçüde artarak metan kaymasının azaltılması ihtiyacını vurgulamıştır. GWP analizi sonucunda, LNG kullanımı, küresel ısınma etkisinde ortalama %23'lük bir azalma sağladığını ortaya koymuştur. Yakıta özgü emisyon faktörlerini ve gerçek operasyonel verileri entegre eden bu çalışma, LNG'nin denizcilikte sürdürülebilirlik hedeflerine ulaşmada bir geçiş yakıtı olarak rolünü destekleyen sağlam kanıtlar sunmaktadır. Bu bilgiler, deniz taşımacılığına düşük karbonlu yakıtlara geçiş yapmak isteyen ve bu yolda ilerleyen gemi operatörleri, düzenleyiciler ve sektör paydaşları için stratejik rehberlik sunmaktadır.

Kaynakça

  • Al‐Douri, A., Alsuhaibani, A.S., Moore, M., Nielsen, R.B., El‐Baz, A.A., El‐Halwagi, M.M. (2022). Greenhouse gases emissions in liquified natural gas as a marine fuel: Life cycle analysis and reduction potential. The Canadian Journal of Chemical Engineering, 100(6): 1178–1186.
  • Araújo, K., Mahajan, D., Kerr, R., da Silva, M. (2017). Global biofuels at the crossroads: an overview of technical, policy, and investment complexities in the sustainability of biofuel development. Agriculture, 7(4): 32.
  • Balcombe, P., Brierley, J., Lewis, C., Skatvedt, L., Speirs, J., Hawkes, A., Staffell, I. (2019). How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Conversion and Management, 182: 72–88.
  • Bayraktar, M., Pamik, M., Sokukcu, M., Yuksel, O. (2023). A SWOT-AHP analysis on biodiesel as an alternative future marine fuel. Clean Technologies and Environmental Policy, 25(7): 2233–2248. doi: 10.1007/s10098-023-02501-7.
  • Bilgili, L. (2021). Comparative assessment of alternative marine fuels in life cycle perspective. Renewable and Sustainable Energy Reviews, 144: 110985.
  • Bullock, S., Mason, J., Larkin, A. (2024). Are the IMO’s new targets for international shipping compatible with the Paris Climate Agreement? Climate Policy, 24(7): 963–968.
  • Chen, X., Yang, J. (2024). Analysis of the uncertainty of the AIS-based bottom-up approach for estimating ship emissions. Marine Pollution Bulletin, 199: 115968.
  • de Oliveira, D.D., de Santana Silva, E., Pereira, S.S., Lopes, A.P., Swan, L., Costa, B.S., Ventura, M., dos Santos Fernandez, M.A. (2019). Monitoring vessel traffic in Rio de Janeiro port area: Control of marine antifouling regulations. Ocean & Coastal Management, 182: 104997.
  • DNV, Collaboration is key to scale up fuel availability in time, (2022). Accessed Date: 12/06/2024, https://www.dnv.com/expert-story/maritime-impact/Collaboration-is-key-to-scale-up-fuel-availability-in-time/ is retrieved.
  • Fan, A., Yang, J., Yang, L., Wu, D., Vladimir, N. (2022). A review of ship fuel consumption models. Ocean Engineering, 264: 112405.
  • Fu, X., Chen, D., Wang, X., Li, Y., Lang, J., Zhou, Y., Guo, X. (2023). The impacts of ship emissions on ozone in eastern China. Science of the Total Environment, 903: 166252.
  • Greenhouse Gas Protocol, IPCC Global Warming Potential Values, (2024). Accessed Date: 14/03/2025, https://ghgprotocol.org/sites/default/files/2024-08/Global-Warming-Potential-Values%20%28August%202024%29.pdf is retrieved.
  • Haque, F., Ntim, C.G. (2018). Environmental policy, sustainable development, governance mechanisms and environmental performance. Business Strategy and the Environment, 27(3): 415–435.
  • Heikkilä, M., Kuittinen, N., Grönholm, T. (2024). Comparing modelled and measured exhaust gas components from two LNG-powered ships. Atmospheric Environment: X, 23: 100275.
  • IMO, Fourth Greenhouse Gas Study 2020, (2020a). Accessed Date: 25/06/2024, https://www.imo.org/en/ourwork/Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx is retrieved.
  • IMO, The Fourth IMO GHG Study, (2020b). Accessed Date: 25/06/2024, https://greenvoyage2050.imo.org/wp-content/uploads/2021/07/Fourth-IMO-GHG-Study-2020-Full-report-and-annexes_compressed.pdf is retrieved.
  • IMO, GUIDELINES ON THE METHOD OF CALCULATION OF THE ATTAINED ENERGY EFFICIENCY DESIGN INDEX (EEDI) FOR NEW SHIPS, (2022a). Accessed Date: 21/09/2024, https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.364%2879%29.pdf is retrieved.
  • IMO, RESOLUTION MEPC.346(78) (adopted on 10 June 2022) 2022 GUIDELINES FOR THE DEVELOPMENT OF A SHIP ENERGY EFFICIENCY MANAGEMENT PLAN (SEEMP), (2022b). Accessed Date: 20/08/2024, https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.346%2878%29.pdf is retrieved.
  • Korkmaz, S.A., Erginer, K.E., Yuksel, O., Konur, O., Colpan, C.O. (2023). Environmental and economic analyses of fuel cell and battery-based hybrid systems utilized as auxiliary power units on a chemical tanker vessel. International Journal of Hydrogen Energy, 48(60): 23279-23295.
  • Lion, S., Vlaskos, I., Taccani, R. (2020). A review of emissions reduction technologies for low and medium speed marine Diesel engines and their potential for waste heat recovery. Energy Conversion and Management, 207: 112553.
  • Ma, W., Zhang, J., Han, Y., Mao, T., Ma, D., Zhou, B., Chen, M. (2023). A decision-making optimization model for ship energy system integrating emission reduction regulations and scheduling strategies. Journal of Industrial Information Integration, 35: 100506.
  • McCarney, J. (2020). Evolution in the engine room: a review of technologies to deliver decarbonised, sustainable shipping: technology options for the shipping sector to meet international ship emissions limits. Johnson Matthey Technology Review, 64(3): 374–392.
  • Munim, Z.H., Chowdhury, M.M.H., Tusher, H.M., Notteboom, T. (2023). Towards a prioritization of alternative energy sources for sustainable shipping. Marine Policy, 152: 105579.
  • Sang, Y., Ding, Y., Xu, J., Sui, C. (2023). Ship voyage optimization based on fuel consumption under various operational conditions. Fuel, 352: 129086.
  • Shu, Y., Wang, X., Huang, Z., Song, L., Fei, Z., Gan, L., Xu, Y., Yin, J. (2022). Estimating spatiotemporal distribution of wastewater generated by ships in coastal areas. Ocean & Coastal Management, 222: 106133.
  • The Intergovernmental Panel on Climate Change (IPCC), The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity, (2025). Accessed Date: 01/04/2025, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07.pdf is retrieved.
  • UNCTAD, (2023). Review of Maritime Transport 2023: Towards a Green and Just Transition. International Trade Centre.
  • Uyanık, T., Karatuğ, Ç., Arslanoğlu, Y. (2020). Machine learning approach to ship fuel consumption: A case of container vessel. Transportation Research Part D: Transport and Environment, 84: 102389.
  • Van Roy, W., Merveille, J.B., Van Nieuwenhove, A., Scheldeman, K., Maes, F. (2024). Policy recommendations for international regulations addressing air pollution from ships. Marine Policy, 159: 105913.
  • Wang, T., Cheng, P., Wang, Y. (2025). How the establishment of carbon emission trading system affects ship emission reduction strategies designed for sulfur emission control area. Transport Policy, 160: 138–153.
  • Xing, H., Stuart, C., Spence, S., Chen, H. (2021). Alternative fuel options for low carbon maritime transportation: Pathways to 2050. Journal of Cleaner Production, 297: 126651.
  • Zhou, J., Zhang, J., Jiang, G., Xie, K. (2024). Using DPF to Control Particulate Matter Emissions from Ships to Ensure the Sustainable Development of the Shipping Industry. Sustainability, 16(15): 6642.
  • Zincir, B.A., Arslanoglu, Y. (2024). Comparative life cycle assessment of alternative marine fuels. Fuel, 358: 129995.

Voyage-Based Emission Profiles and the Impact of LNG as a Marine Fuel in the Environmental Performance of Container Ships Operating on the Same Line Route

Yıl 2025, Erken Görünüm Makaleler, 1 - 16
https://doi.org/10.52998/trjmms.1669674

Öz

Growing international pressure to reduce maritime emissions has intensified the search for cleaner propulsion alternatives within the shipping industry. Focusing on six sister container ships operating transatlantic routes, this research analyses 120 real-world voyages to compare the emission profiles of conventional fuels including Heavy Fuel Oil (HFO) and Marine Gas Oil (MGO) with alternative fuel Liquefied Natural Gas (LNG). Daily CO2 emissions using traditional fuels averaged 111.3 tonnes, with nitrogen dioxide (NOX) and sulphur dioxide (SOX) emissions reaching 2,659.9 kg/day and 1,690.4 kg/day, respectively. LNG usage significantly reduced CO₂ by up to 32%, NOX by 86%, SOX by 99.95%, and particulate matter (PM) by over 90% while improving overall emission intensity. However, Methane (CH4) emissions increased notably, averaging 354.2 kg/day, highlighting the need for methane slip mitigation. The Global Warming Potential (GWP) analysis revealed an average 23% reduction in climate impact with LNG. This research analyses different voyages of sister container ships on the same route to obtain realistic and comparable emission values, as well as demonstrating the impact of operational differences on emissions. Another novelty of this research is the not only calculation of emissions of N2O, CH4 and CO2 but also a range of important harmful pollutants, highlighted by the International Maritime Organisation (IMO). By integrating fuel-specific emission factors and actual operational data, the study presents robust evidence supporting LNG’s role as a transitional fuel toward achieving maritime sustainability goals. These insights offer strategic guidance for ship operators, regulators, and industry stakeholders navigating the pathway to low-carbon shipping.

Kaynakça

  • Al‐Douri, A., Alsuhaibani, A.S., Moore, M., Nielsen, R.B., El‐Baz, A.A., El‐Halwagi, M.M. (2022). Greenhouse gases emissions in liquified natural gas as a marine fuel: Life cycle analysis and reduction potential. The Canadian Journal of Chemical Engineering, 100(6): 1178–1186.
  • Araújo, K., Mahajan, D., Kerr, R., da Silva, M. (2017). Global biofuels at the crossroads: an overview of technical, policy, and investment complexities in the sustainability of biofuel development. Agriculture, 7(4): 32.
  • Balcombe, P., Brierley, J., Lewis, C., Skatvedt, L., Speirs, J., Hawkes, A., Staffell, I. (2019). How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Conversion and Management, 182: 72–88.
  • Bayraktar, M., Pamik, M., Sokukcu, M., Yuksel, O. (2023). A SWOT-AHP analysis on biodiesel as an alternative future marine fuel. Clean Technologies and Environmental Policy, 25(7): 2233–2248. doi: 10.1007/s10098-023-02501-7.
  • Bilgili, L. (2021). Comparative assessment of alternative marine fuels in life cycle perspective. Renewable and Sustainable Energy Reviews, 144: 110985.
  • Bullock, S., Mason, J., Larkin, A. (2024). Are the IMO’s new targets for international shipping compatible with the Paris Climate Agreement? Climate Policy, 24(7): 963–968.
  • Chen, X., Yang, J. (2024). Analysis of the uncertainty of the AIS-based bottom-up approach for estimating ship emissions. Marine Pollution Bulletin, 199: 115968.
  • de Oliveira, D.D., de Santana Silva, E., Pereira, S.S., Lopes, A.P., Swan, L., Costa, B.S., Ventura, M., dos Santos Fernandez, M.A. (2019). Monitoring vessel traffic in Rio de Janeiro port area: Control of marine antifouling regulations. Ocean & Coastal Management, 182: 104997.
  • DNV, Collaboration is key to scale up fuel availability in time, (2022). Accessed Date: 12/06/2024, https://www.dnv.com/expert-story/maritime-impact/Collaboration-is-key-to-scale-up-fuel-availability-in-time/ is retrieved.
  • Fan, A., Yang, J., Yang, L., Wu, D., Vladimir, N. (2022). A review of ship fuel consumption models. Ocean Engineering, 264: 112405.
  • Fu, X., Chen, D., Wang, X., Li, Y., Lang, J., Zhou, Y., Guo, X. (2023). The impacts of ship emissions on ozone in eastern China. Science of the Total Environment, 903: 166252.
  • Greenhouse Gas Protocol, IPCC Global Warming Potential Values, (2024). Accessed Date: 14/03/2025, https://ghgprotocol.org/sites/default/files/2024-08/Global-Warming-Potential-Values%20%28August%202024%29.pdf is retrieved.
  • Haque, F., Ntim, C.G. (2018). Environmental policy, sustainable development, governance mechanisms and environmental performance. Business Strategy and the Environment, 27(3): 415–435.
  • Heikkilä, M., Kuittinen, N., Grönholm, T. (2024). Comparing modelled and measured exhaust gas components from two LNG-powered ships. Atmospheric Environment: X, 23: 100275.
  • IMO, Fourth Greenhouse Gas Study 2020, (2020a). Accessed Date: 25/06/2024, https://www.imo.org/en/ourwork/Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx is retrieved.
  • IMO, The Fourth IMO GHG Study, (2020b). Accessed Date: 25/06/2024, https://greenvoyage2050.imo.org/wp-content/uploads/2021/07/Fourth-IMO-GHG-Study-2020-Full-report-and-annexes_compressed.pdf is retrieved.
  • IMO, GUIDELINES ON THE METHOD OF CALCULATION OF THE ATTAINED ENERGY EFFICIENCY DESIGN INDEX (EEDI) FOR NEW SHIPS, (2022a). Accessed Date: 21/09/2024, https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.364%2879%29.pdf is retrieved.
  • IMO, RESOLUTION MEPC.346(78) (adopted on 10 June 2022) 2022 GUIDELINES FOR THE DEVELOPMENT OF A SHIP ENERGY EFFICIENCY MANAGEMENT PLAN (SEEMP), (2022b). Accessed Date: 20/08/2024, https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.346%2878%29.pdf is retrieved.
  • Korkmaz, S.A., Erginer, K.E., Yuksel, O., Konur, O., Colpan, C.O. (2023). Environmental and economic analyses of fuel cell and battery-based hybrid systems utilized as auxiliary power units on a chemical tanker vessel. International Journal of Hydrogen Energy, 48(60): 23279-23295.
  • Lion, S., Vlaskos, I., Taccani, R. (2020). A review of emissions reduction technologies for low and medium speed marine Diesel engines and their potential for waste heat recovery. Energy Conversion and Management, 207: 112553.
  • Ma, W., Zhang, J., Han, Y., Mao, T., Ma, D., Zhou, B., Chen, M. (2023). A decision-making optimization model for ship energy system integrating emission reduction regulations and scheduling strategies. Journal of Industrial Information Integration, 35: 100506.
  • McCarney, J. (2020). Evolution in the engine room: a review of technologies to deliver decarbonised, sustainable shipping: technology options for the shipping sector to meet international ship emissions limits. Johnson Matthey Technology Review, 64(3): 374–392.
  • Munim, Z.H., Chowdhury, M.M.H., Tusher, H.M., Notteboom, T. (2023). Towards a prioritization of alternative energy sources for sustainable shipping. Marine Policy, 152: 105579.
  • Sang, Y., Ding, Y., Xu, J., Sui, C. (2023). Ship voyage optimization based on fuel consumption under various operational conditions. Fuel, 352: 129086.
  • Shu, Y., Wang, X., Huang, Z., Song, L., Fei, Z., Gan, L., Xu, Y., Yin, J. (2022). Estimating spatiotemporal distribution of wastewater generated by ships in coastal areas. Ocean & Coastal Management, 222: 106133.
  • The Intergovernmental Panel on Climate Change (IPCC), The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity, (2025). Accessed Date: 01/04/2025, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07.pdf is retrieved.
  • UNCTAD, (2023). Review of Maritime Transport 2023: Towards a Green and Just Transition. International Trade Centre.
  • Uyanık, T., Karatuğ, Ç., Arslanoğlu, Y. (2020). Machine learning approach to ship fuel consumption: A case of container vessel. Transportation Research Part D: Transport and Environment, 84: 102389.
  • Van Roy, W., Merveille, J.B., Van Nieuwenhove, A., Scheldeman, K., Maes, F. (2024). Policy recommendations for international regulations addressing air pollution from ships. Marine Policy, 159: 105913.
  • Wang, T., Cheng, P., Wang, Y. (2025). How the establishment of carbon emission trading system affects ship emission reduction strategies designed for sulfur emission control area. Transport Policy, 160: 138–153.
  • Xing, H., Stuart, C., Spence, S., Chen, H. (2021). Alternative fuel options for low carbon maritime transportation: Pathways to 2050. Journal of Cleaner Production, 297: 126651.
  • Zhou, J., Zhang, J., Jiang, G., Xie, K. (2024). Using DPF to Control Particulate Matter Emissions from Ships to Ensure the Sustainable Development of the Shipping Industry. Sustainability, 16(15): 6642.
  • Zincir, B.A., Arslanoglu, Y. (2024). Comparative life cycle assessment of alternative marine fuels. Fuel, 358: 129995.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Deniz Ulaşımı, Gemi Ana ve Yardımcı Makineleri, Gemilerde Enerji Verimliliği
Bölüm Araştırma Makalesi
Yazarlar

Coşkan Sevgili 0000-0003-3929-079X

Murat Bayraktar 0000-0001-7252-4776

Onur Yüksel 0000-0002-5728-5866

Alper Seyhan 0000-0003-3707-6706

Erken Görünüm Tarihi 12 Haziran 2025
Yayımlanma Tarihi
Gönderilme Tarihi 3 Nisan 2025
Kabul Tarihi 11 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Erken Görünüm Makaleler

Kaynak Göster

APA Sevgili, C., Bayraktar, M., Yüksel, O., Seyhan, A. (2025). Voyage-Based Emission Profiles and the Impact of LNG as a Marine Fuel in the Environmental Performance of Container Ships Operating on the Same Line Route. Turkish Journal of Maritime and Marine Sciences1-16. https://doi.org/10.52998/trjmms.1669674

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).