Araştırma Makalesi
BibTex RIS Kaynak Göster

Antioxidant, antiradical properties, vitamin and trace element status of Artemisia spicigera C. Koch distributed in the Türkiye flora

Yıl 2025, Sayı: Online First

Öz

It is known that the active substances present in plants contribute to many biochemical processes and provide the balance of organisms. This study aims to determine the antioxidant and antiradical properties of the methanol extract of Artemisia spicigera (A. spicigera) C. Koch leaves and to measure the levels of trace elements and vitamins E and K. Trace element analyses were performed by the Inductively Coupled Plasma - Optical Emission Spectroscop dry ashing and vitamin analyses were performed by the High Performance Liquid Chromatography method. Vitamin C, total phenol and flavonoid contencts, antioxidant capacity, DPPH•, ABTS•+, O2•-, H2O2 and OH• values were determined spectrophotometrically. Total phenolic and flavonoid contents and antioxidant capacity were determined as 18.45 ± 0.39 mgGA/g, 26.29 ± 1.64 mgQE/g and 44.08 ± 2.91 mMAA/g, respectively. Mn, Zn, Cu, α-tocopherol, phylloquinone and ascorbic acid levels were found as 287.32 ± 0.57, 104.36 ± 2.12, 37.40 ± 0.10, 10.28 ± 0.75, 0.149 ± 0.047 μmol/kg and 217.36 ± 29.20 mg/100g, respectively. In vitro antioxidant properties determined by DPPH•, ABTS•+, H2O2 and OH• assays showed maximum inhibitory with respective IC50 values of 61.83 ± 0.68, 71.74 ± 0.79, 34.25 ± 0.74 and 77.91 ± 0.88 μg/mL. The IC50 values of these assays showed promising antioxidant power. The results obtained in this study showed that the plant leaves migth be a potential candidate for in vivo studies to be evaluated in the future. A. spicigera can be also used as a potential supplement or in the pharmaceutical industries as a source of natural antioxidants.

Destekleyen Kurum

Van Yüzüncü Yıl University Scientific Research Projects Coordination Unit

Proje Numarası

2022/FDK-9894

Teşekkür

This study was supported by Van Yüzüncü Yıl University Scientific Research Projects Coordination Unit with project number 2022/FDK-9894.

Kaynakça

  • Abad, M. J., Bedova, L. M., Apaza, L., & Bermejo, P. (2012). The Artemisia L. genus: a review of bioactive essential oils. Molecules, 17, 2542–2566. https://doi. org/10.3390/molecules17032542
  • Abdollahi, M., Ranjbar, A., Shadnia, S., Nikfar, S., & Rezaie, A. (2004). Pesticides and oxidative stress: a review. Medical Science Monitor, 10(6), 141–147.
  • Afshar, F. H., Delazar, A., Nazemiyeh, H., Esnaashari, S., & Moghadam, S. B. (2012). Comparison of the total phenol, flavonoid contents and antioxidant activity of methanolic extracts of Artemisia spicigera and A. splendens growing in Iran. Pharmaceutical Sciences, 18(3), 165–170.
  • Al-Saleh, I. A., Billed, G., & El-Doush, I. I. (2006). Levels of selenium, dl α-tocopherol, dl-γ- tocopherol, all-trans-retinol, thymoquinone, and thymol in different brands of Nigella sativa seeds. Journal of Food Composition and Analysis, 19(2–3), 167–175. https://doi.org/10.1016/j.jfca.2005.04.011
  • Bajpai, P., Usmani, S., Kumar, R., & Prakash, O. (2024). Recent advances in anticancer approach of traditional medicinal plants: A novel strategy for cancer chemotherapy. Intelligent Pharmacy, 2(3), 291–304. https://doi.org/10.1016/j. ipha.2024.02.001
  • Block, G., Dietrich, M., Norkus, E. P., Morrow, J. D., Hudes, M., Caan, B., & Packer, L. (2002). Factors associated with oxidative stress in human populations. American Journal of Epidemiology, 156(3), 274–285. https://doi.org/10.1093/aje/ kwf029
  • Boztaş, G., Avcı, A. B., Arabacı, O., & Bayram, E. (2021). Economic status of medicinal and aromatic plants in the world and in Türkiye. Theoretical and Applied Forestry, 1, 27–33.
  • Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74, 2157–2184. https://doi.org/10.1016/j.lfs.2003.09.047
  • Chaachouay, N., & Zidane, L. (2024). Plant-derived natural products: a source for drug discovery and development. Drugs and Drug Candidates, 3(1), 184–207. https://doi.org/10.3390/ddc3010011
  • Chank, X., Zhanq, T., Zhank, W., Zhao, Z., & Sun, J. (2020). Natural drugs as a treatment strategy for cardiovascular disease through the regulation of oxidative stress. Oxidative Medicine and Cellular Longevity, 2020, 5430407. https://doi. org/10.1155/2020/5430407
  • Chaudhry, G. E. S., Zeenia, Sharifi-Rad, J., & Calina, D. (2024). Hispidulin: a promising anticancer agent and mechanistic breakthrough for targeted cancer therapy. Naunyn-Schmiedeberg’s Archives of Pharmacology, 397(4), 1919–1934. https://doi.org/10.1186/s12917-024-03983-3
  • Chehregani, A., Atri, M., Yousefi, S., Albooyeh, Z., & Mohsenzadeh, F. (2013). Essential oil variation in the populations of Artemisia spicigera from northwest of Iran: chemical composition and antibacterial activity. Pharmaceutical Biology, 51(2), 246–252. https://doi.org/10.3109/13880209.2012.717631
  • Chen, Y., Chang, H., Wang, C., & Cheng, F. (2009). Antioxidative activities of hydrolysates from duck egg white using enzymatic hydrolysis. The Asian- Australasian Journal of Animal Sciences, 22(11), 1587–1593.
  • Cuendet, M., Hostettmann, K., & Potterat, O. (1997). Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helvetica Chimica Acta, 80, 1144–1152.
  • Czechowski, T., Larson, T. R., Catania, T. M., Harvey, D., Wei, C., Essome, M., Brown, G. D., & Graham, I. A. (2018). Detailed phytochemical analysis of high-and low artemisinin-producing chemotypes of Artemisia annua. Frontiers in Plant Science, 9, 641. https://doi.org/10.3389/fpls.2018.00641
  • Ekiert, H., Klimek-Szczykutowicz, M., Rzepiela, A., Klin, P., & Szopa, A. (2022). Artemisia species with high biological values as a potential source of medicinal and cosmetic raw materials. Molecules, 27(19), 6427. https://doi.org/10.3390/ molecules27196427
  • Erel, O. (2004). A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 37(4), 277–285. https://doi.org/10.1016/j.clinbiochem.2003.11.015
  • Gamez-Meza, N., Noriega-Rodriguez, J. A., Medina-Juarez, L. A., Ortega-Garcia, J., Cazarez-Casanova, R., & Angulo-Guerrero, O. (1999). Antioxidant activity in soybean oil of extracts from Thompson grape bagasse. Journal of the American Oil Chemists’ Society, 76, 1445–1447.
  • Ghorbani, S., Kosari Nasab, M., Mahjouri, S., Talebpour, A. H., Movafeghi, A., & Maggi, F. (2021). Enhancement of in vitro production of volatile organic compounds by shoot differentiation in Artemisia spicigera. Plants, 10, 208. https:// doi.org/10.3390/plants10020208
  • Golubkina, N., Shevchuk, O., Logvinenko, L., Molchanova, A., & Plugatar, Y. V. (2018). Macro and trace element accumulation by species of genus Artemisia on the southern coast of the Crimea. Acta Horticulturae, 1324, 389–394. https://doi. org/10.17660/ActaHortic.2021.1324.60
  • Gülçin, İ. (2025). Antioxidants: a comprehensive review. Archives of Toxicology, 99, 1893–1997. https://doi.org/10.1007/s00204-025-03997-2
  • Gülçin, İ., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248. https://doi.org/10.3390/pr11082248
  • Kafshboran, H. R., Dehghan, G., & Aghdam, M. N. (2011, January 7–9). Investigation of radical scavenging potential of some populations of Artemisia spicigera in relation to their flavonoid content. In Proceedings of International Conference on Life Science and Technology. Mumbai, India.
  • Ključevšek, T., & Kreft, S. (2025). Allergic potential of medicinal plants from the Asteraceae family. Health Science Reports, 8(2), e70398. https://doi.org/10.1002/ hsr2.70398
  • Konovalov, D. A. (2014). Polyacetylene compounds of plants of the Asteraceae family. Pharmaceutical Chemistry Journal, 48, 9. https://doi.org/10.1007/s11094- 014-1159-7
  • Kunchandy, E., & Rao, M. N. A. (1990). Oxygen radical scavenging activity of curcumin. International Journal of Pharmaceutics, 58(3), 237–240. https://doi. org/10.1016/0378-5173(90)90201-E
  • Lamaison, J. L., Carnat, A., & Petitjean, C. (1990). Tannin content and inhibiting activity of elastase in Rosaceae. Annales Pharmaceutiques Françaises, 48(6), 335– 340.
  • Lee, J. H., Lee, J. M., Lee, S. H., Kim, Y. G., Lee, S., Kim, S. M., & Cha, S. W. (2015). Comparison of artemisinin content and antioxidant activity from various organs of Artemisia species. Horticulture, Environment, and Biotechnology, 56, 697–703. https://doi.org/10.1007/s13580-015-0143-9
  • Maridass, M., & De Britto, A. J. (2008). Origins of plant derived medicines. Ethnobotanical Leaflets, 12(1), 373–387.
  • Marinova, G., & Batchvarov, V. (2011). Evaluation of the methods for determination of the free radical scavenging activity by DPPH. Bulgarian Journal of Agricultural Science, 17(1), 11–24.
  • Öztürkmen, L. (1996). Pharmacognostical studies on Artemisia spicigera C. Koch (PhD thesis). IU Health Sciences Institute, İstanbul, Türkiye.
  • Pellegrini, N., Re, R., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Peplow, M. (2018). Looking for cheaper routes to malaria medicines. Chemical Engineering News, 96(11), 29–31. http://doi/abs/10.1021/op4003196
  • Petretto, G. L., Chessa, M., Piana, A., Masia, M. D., Foddai, M., Mangano, G., Culeddu, N., Afifi, F. U., & Pintore, G. (2013). Chemical and biological study on the essential oil of Artemisia caerulescens L. ssp. densiflora (Viv.). Natural Product Research, 27, 1709–1715. https://doi.org/10.1080/14786419.2012.749471
  • Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269, 337–341. https://doi.org/10.1006/abio.1999.4019
  • Rolnik, A., & Olas, B. (2021). The plants of the Asteraceae family as agents in the protection of human health. International Journal of Molecular Sciences, 22(6), 3009. https://doi.org/10.3390/ijms22063009
  • Ruch, R. J., Cheng, S. R., & Klaunig, J. E. (1989). Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 10(6), 1003–1008. https://doi.org/10.1093/ carcin/10.6.1003
  • Sahin, A., Kıran, Y., Karataş, F., & Sönmez, S. (2005). Vitamins A, C, and E and β‐Carotene content in seeds of seven species of Vicia L. Journal of Integrative Plant Biology, 47(4), 487–493. https://doi.org/10.1111/j.1744-7909.2005.00083.x
  • Sen, S., Chakraborty, R., Sridhar, C., Reddy, Y. S. R., & De, B. (2010). Free radicals, antioxidants, diseases and phytomedicines: Current status and future prospect. International Journal of Pharmaceutical Sciences Review and Research, 3(1), 91– 100.
  • Soni, R., Singh, A., & Gupta, V. (2024). Efficient in vitro regeneration of Artemisia annua: Effect of different combinations of plant growth regulators on various types of explants. Plant Biosystems, 158(1), 59–69. https://doi.org/10.1080/1126 3504.2023.2287538
  • Tao, G., Dagher, F., Moballegh, A., & Ghose, R. (2020). Role of oxidative stress in the efficacy and toxicity of herbal supplements. Current Opinion in Toxicology, 20–21, 36–40. https://doi.org/10.1016/j.cotox.2020.04.004
  • Tumilaar, S. G., Hardianto, A., Dohi, H., & Kurnia, D. (2024). A comprehensive review of free radicals, oxidative stress, and antioxidants: Overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. Journal of Chemistry, 2024(1), 5594386. https:// doi.org/10.1155/2024/5594386
  • Xiao, L., Tan, H., & Zhang, L. (2016). Artemisia annua glandular secretory trichomes: The biofactory of antimalarial agent artemisinin. Science Bulletin, 61(1), 26–36. https://doi.org/10.1007/s11434-015-0980-z
  • Yi, O. S., Meyer, A. S., & Frankel, E. N. (1997). Antioxidant activity of grape extracts in a lecithin liposome system. Journal of the American Oil Chemists’ Society, 74(10), 1301–1307.
  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555–559.
  • Zurera, G., Estrada, B., Rineon, F., & Pozo, R. (1987). Lead and cadmium contamination levels in edible vegetables. Bulletin of Environmental Contamination and Toxicology, 38, 805–812.
Yıl 2025, Sayı: Online First

Öz

Bitki içeriklerinde bulunan aktif maddelerin pek çok biyokimyasal süreçteki katkıları ve canlı organizmanın dengesini sağladığı bilinmektedir. Bu çalışmada, Artemisia spicigera (A. spicigera) C. Koch yaprağının metanol ekstraktının antioksidanve antiradikal özelliklerinin belirlenmesi ve iz element ile vitamin seviyelerinin ölçülmesi amaçlanmıştır. İz element analizleri Endüktif Eşleştirilmiş Plazma – Optik Emisyon Spektroskopisi kuru külleme ile vitamin E ve K analizleri ise Yüksek Performanslı Sıvı Kromatografisi yöntemi ile belirlenmiştir. Vitamin C, toplam fenol ve flavonoid içerikleri, antioksidan kapasite, DPPH•, ABTS•+, O2•-, H2O2 ve OH• değerleri spektrofotometrik olarak tespit edilmiştir. Toplam fenolik ve flavonoid içerik ile antioksidan kapasitesi sırasıyla 18,45 ± 0,39 mgGA/g, 26,29 ± 1,64 mgQE/g ve 44,08 ± 2,91 mMAA/g olarak belirlenmiştir. Mn, Zn, Cu, α-tokoferol, filokinon ve askorbik asit düzeyleri sırasıyla 287,32 ± 0,57, 104,36 ± 2,12, 37,40 ± 0,10, 10,28 ± 0,75, 0,149 ± 0,047 μmol/kg ve 217,36 ± 29,20 mg/100g olarak bulunmuştur. DPPH•, ABTS•+, H2O2 ve OH• deneyleri ile belirlenen in vitro antioksidan özelliklerin, ilgili IC50 değerleri 61,83 ± 0,68, 71,74 ± 0,79, 34,25 ± 0,74 ve 77,91 ± 0,88 μg/mL ile maksimum inhibitör göstermiştir. Bu testlerin IC50 değerleri ümit verici antioksidan güç göstermiştir. Bu sonuçlar gelecekte değerlendirilecek in vivo çalışmalar için A. Spicigera yaprağının potansiyel bir aday olabileceğini kapsamlı bir şekilde göstemiştir. A. spicigera aynı zamanda potansiyel bir takviye veya doğal antioksidan kaynağı olarak ilaç endüstrisinde de kullanılabilir.

Proje Numarası

2022/FDK-9894

Kaynakça

  • Abad, M. J., Bedova, L. M., Apaza, L., & Bermejo, P. (2012). The Artemisia L. genus: a review of bioactive essential oils. Molecules, 17, 2542–2566. https://doi. org/10.3390/molecules17032542
  • Abdollahi, M., Ranjbar, A., Shadnia, S., Nikfar, S., & Rezaie, A. (2004). Pesticides and oxidative stress: a review. Medical Science Monitor, 10(6), 141–147.
  • Afshar, F. H., Delazar, A., Nazemiyeh, H., Esnaashari, S., & Moghadam, S. B. (2012). Comparison of the total phenol, flavonoid contents and antioxidant activity of methanolic extracts of Artemisia spicigera and A. splendens growing in Iran. Pharmaceutical Sciences, 18(3), 165–170.
  • Al-Saleh, I. A., Billed, G., & El-Doush, I. I. (2006). Levels of selenium, dl α-tocopherol, dl-γ- tocopherol, all-trans-retinol, thymoquinone, and thymol in different brands of Nigella sativa seeds. Journal of Food Composition and Analysis, 19(2–3), 167–175. https://doi.org/10.1016/j.jfca.2005.04.011
  • Bajpai, P., Usmani, S., Kumar, R., & Prakash, O. (2024). Recent advances in anticancer approach of traditional medicinal plants: A novel strategy for cancer chemotherapy. Intelligent Pharmacy, 2(3), 291–304. https://doi.org/10.1016/j. ipha.2024.02.001
  • Block, G., Dietrich, M., Norkus, E. P., Morrow, J. D., Hudes, M., Caan, B., & Packer, L. (2002). Factors associated with oxidative stress in human populations. American Journal of Epidemiology, 156(3), 274–285. https://doi.org/10.1093/aje/ kwf029
  • Boztaş, G., Avcı, A. B., Arabacı, O., & Bayram, E. (2021). Economic status of medicinal and aromatic plants in the world and in Türkiye. Theoretical and Applied Forestry, 1, 27–33.
  • Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74, 2157–2184. https://doi.org/10.1016/j.lfs.2003.09.047
  • Chaachouay, N., & Zidane, L. (2024). Plant-derived natural products: a source for drug discovery and development. Drugs and Drug Candidates, 3(1), 184–207. https://doi.org/10.3390/ddc3010011
  • Chank, X., Zhanq, T., Zhank, W., Zhao, Z., & Sun, J. (2020). Natural drugs as a treatment strategy for cardiovascular disease through the regulation of oxidative stress. Oxidative Medicine and Cellular Longevity, 2020, 5430407. https://doi. org/10.1155/2020/5430407
  • Chaudhry, G. E. S., Zeenia, Sharifi-Rad, J., & Calina, D. (2024). Hispidulin: a promising anticancer agent and mechanistic breakthrough for targeted cancer therapy. Naunyn-Schmiedeberg’s Archives of Pharmacology, 397(4), 1919–1934. https://doi.org/10.1186/s12917-024-03983-3
  • Chehregani, A., Atri, M., Yousefi, S., Albooyeh, Z., & Mohsenzadeh, F. (2013). Essential oil variation in the populations of Artemisia spicigera from northwest of Iran: chemical composition and antibacterial activity. Pharmaceutical Biology, 51(2), 246–252. https://doi.org/10.3109/13880209.2012.717631
  • Chen, Y., Chang, H., Wang, C., & Cheng, F. (2009). Antioxidative activities of hydrolysates from duck egg white using enzymatic hydrolysis. The Asian- Australasian Journal of Animal Sciences, 22(11), 1587–1593.
  • Cuendet, M., Hostettmann, K., & Potterat, O. (1997). Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helvetica Chimica Acta, 80, 1144–1152.
  • Czechowski, T., Larson, T. R., Catania, T. M., Harvey, D., Wei, C., Essome, M., Brown, G. D., & Graham, I. A. (2018). Detailed phytochemical analysis of high-and low artemisinin-producing chemotypes of Artemisia annua. Frontiers in Plant Science, 9, 641. https://doi.org/10.3389/fpls.2018.00641
  • Ekiert, H., Klimek-Szczykutowicz, M., Rzepiela, A., Klin, P., & Szopa, A. (2022). Artemisia species with high biological values as a potential source of medicinal and cosmetic raw materials. Molecules, 27(19), 6427. https://doi.org/10.3390/ molecules27196427
  • Erel, O. (2004). A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 37(4), 277–285. https://doi.org/10.1016/j.clinbiochem.2003.11.015
  • Gamez-Meza, N., Noriega-Rodriguez, J. A., Medina-Juarez, L. A., Ortega-Garcia, J., Cazarez-Casanova, R., & Angulo-Guerrero, O. (1999). Antioxidant activity in soybean oil of extracts from Thompson grape bagasse. Journal of the American Oil Chemists’ Society, 76, 1445–1447.
  • Ghorbani, S., Kosari Nasab, M., Mahjouri, S., Talebpour, A. H., Movafeghi, A., & Maggi, F. (2021). Enhancement of in vitro production of volatile organic compounds by shoot differentiation in Artemisia spicigera. Plants, 10, 208. https:// doi.org/10.3390/plants10020208
  • Golubkina, N., Shevchuk, O., Logvinenko, L., Molchanova, A., & Plugatar, Y. V. (2018). Macro and trace element accumulation by species of genus Artemisia on the southern coast of the Crimea. Acta Horticulturae, 1324, 389–394. https://doi. org/10.17660/ActaHortic.2021.1324.60
  • Gülçin, İ. (2025). Antioxidants: a comprehensive review. Archives of Toxicology, 99, 1893–1997. https://doi.org/10.1007/s00204-025-03997-2
  • Gülçin, İ., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248. https://doi.org/10.3390/pr11082248
  • Kafshboran, H. R., Dehghan, G., & Aghdam, M. N. (2011, January 7–9). Investigation of radical scavenging potential of some populations of Artemisia spicigera in relation to their flavonoid content. In Proceedings of International Conference on Life Science and Technology. Mumbai, India.
  • Ključevšek, T., & Kreft, S. (2025). Allergic potential of medicinal plants from the Asteraceae family. Health Science Reports, 8(2), e70398. https://doi.org/10.1002/ hsr2.70398
  • Konovalov, D. A. (2014). Polyacetylene compounds of plants of the Asteraceae family. Pharmaceutical Chemistry Journal, 48, 9. https://doi.org/10.1007/s11094- 014-1159-7
  • Kunchandy, E., & Rao, M. N. A. (1990). Oxygen radical scavenging activity of curcumin. International Journal of Pharmaceutics, 58(3), 237–240. https://doi. org/10.1016/0378-5173(90)90201-E
  • Lamaison, J. L., Carnat, A., & Petitjean, C. (1990). Tannin content and inhibiting activity of elastase in Rosaceae. Annales Pharmaceutiques Françaises, 48(6), 335– 340.
  • Lee, J. H., Lee, J. M., Lee, S. H., Kim, Y. G., Lee, S., Kim, S. M., & Cha, S. W. (2015). Comparison of artemisinin content and antioxidant activity from various organs of Artemisia species. Horticulture, Environment, and Biotechnology, 56, 697–703. https://doi.org/10.1007/s13580-015-0143-9
  • Maridass, M., & De Britto, A. J. (2008). Origins of plant derived medicines. Ethnobotanical Leaflets, 12(1), 373–387.
  • Marinova, G., & Batchvarov, V. (2011). Evaluation of the methods for determination of the free radical scavenging activity by DPPH. Bulgarian Journal of Agricultural Science, 17(1), 11–24.
  • Öztürkmen, L. (1996). Pharmacognostical studies on Artemisia spicigera C. Koch (PhD thesis). IU Health Sciences Institute, İstanbul, Türkiye.
  • Pellegrini, N., Re, R., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Peplow, M. (2018). Looking for cheaper routes to malaria medicines. Chemical Engineering News, 96(11), 29–31. http://doi/abs/10.1021/op4003196
  • Petretto, G. L., Chessa, M., Piana, A., Masia, M. D., Foddai, M., Mangano, G., Culeddu, N., Afifi, F. U., & Pintore, G. (2013). Chemical and biological study on the essential oil of Artemisia caerulescens L. ssp. densiflora (Viv.). Natural Product Research, 27, 1709–1715. https://doi.org/10.1080/14786419.2012.749471
  • Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269, 337–341. https://doi.org/10.1006/abio.1999.4019
  • Rolnik, A., & Olas, B. (2021). The plants of the Asteraceae family as agents in the protection of human health. International Journal of Molecular Sciences, 22(6), 3009. https://doi.org/10.3390/ijms22063009
  • Ruch, R. J., Cheng, S. R., & Klaunig, J. E. (1989). Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 10(6), 1003–1008. https://doi.org/10.1093/ carcin/10.6.1003
  • Sahin, A., Kıran, Y., Karataş, F., & Sönmez, S. (2005). Vitamins A, C, and E and β‐Carotene content in seeds of seven species of Vicia L. Journal of Integrative Plant Biology, 47(4), 487–493. https://doi.org/10.1111/j.1744-7909.2005.00083.x
  • Sen, S., Chakraborty, R., Sridhar, C., Reddy, Y. S. R., & De, B. (2010). Free radicals, antioxidants, diseases and phytomedicines: Current status and future prospect. International Journal of Pharmaceutical Sciences Review and Research, 3(1), 91– 100.
  • Soni, R., Singh, A., & Gupta, V. (2024). Efficient in vitro regeneration of Artemisia annua: Effect of different combinations of plant growth regulators on various types of explants. Plant Biosystems, 158(1), 59–69. https://doi.org/10.1080/1126 3504.2023.2287538
  • Tao, G., Dagher, F., Moballegh, A., & Ghose, R. (2020). Role of oxidative stress in the efficacy and toxicity of herbal supplements. Current Opinion in Toxicology, 20–21, 36–40. https://doi.org/10.1016/j.cotox.2020.04.004
  • Tumilaar, S. G., Hardianto, A., Dohi, H., & Kurnia, D. (2024). A comprehensive review of free radicals, oxidative stress, and antioxidants: Overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. Journal of Chemistry, 2024(1), 5594386. https:// doi.org/10.1155/2024/5594386
  • Xiao, L., Tan, H., & Zhang, L. (2016). Artemisia annua glandular secretory trichomes: The biofactory of antimalarial agent artemisinin. Science Bulletin, 61(1), 26–36. https://doi.org/10.1007/s11434-015-0980-z
  • Yi, O. S., Meyer, A. S., & Frankel, E. N. (1997). Antioxidant activity of grape extracts in a lecithin liposome system. Journal of the American Oil Chemists’ Society, 74(10), 1301–1307.
  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555–559.
  • Zurera, G., Estrada, B., Rineon, F., & Pozo, R. (1987). Lead and cadmium contamination levels in edible vegetables. Bulletin of Environmental Contamination and Toxicology, 38, 805–812.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Biyokimyası
Bölüm Araştırma Makalesi/Research Article
Yazarlar

Damla Yıldız 0000-0002-9489-3860

Ahmet Bakır 0000-0003-0797-285X

Suat Ekin 0000-0002-6502-5028

Fevzi Özgökçe 0000-0002-3119-8561

Proje Numarası 2022/FDK-9894
Erken Görünüm Tarihi 7 Temmuz 2025
Yayımlanma Tarihi
Gönderilme Tarihi 22 Ocak 2025
Kabul Tarihi 9 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Sayı: Online First

Kaynak Göster

APA Yıldız, D., Bakır, A., Ekin, S., Özgökçe, F. (2025). Antioxidant, antiradical properties, vitamin and trace element status of Artemisia spicigera C. Koch distributed in the Türkiye flora. Trakya University Journal of Natural Sciences(Online First).
AMA Yıldız D, Bakır A, Ekin S, Özgökçe F. Antioxidant, antiradical properties, vitamin and trace element status of Artemisia spicigera C. Koch distributed in the Türkiye flora. Trakya Univ J Nat Sci. Temmuz 2025;(Online First).
Chicago Yıldız, Damla, Ahmet Bakır, Suat Ekin, ve Fevzi Özgökçe. “Antioxidant, Antiradical Properties, Vitamin and Trace Element Status of Artemisia Spicigera C. Koch Distributed in the Türkiye Flora”. Trakya University Journal of Natural Sciences, sy. Online First (Temmuz 2025).
EndNote Yıldız D, Bakır A, Ekin S, Özgökçe F (01 Temmuz 2025) Antioxidant, antiradical properties, vitamin and trace element status of Artemisia spicigera C. Koch distributed in the Türkiye flora. Trakya University Journal of Natural Sciences Online First
IEEE D. Yıldız, A. Bakır, S. Ekin, ve F. Özgökçe, “Antioxidant, antiradical properties, vitamin and trace element status of Artemisia spicigera C. Koch distributed in the Türkiye flora”, Trakya Univ J Nat Sci, sy. Online First, Temmuz 2025.
ISNAD Yıldız, Damla vd. “Antioxidant, Antiradical Properties, Vitamin and Trace Element Status of Artemisia Spicigera C. Koch Distributed in the Türkiye Flora”. Trakya University Journal of Natural Sciences Online First (Temmuz 2025).
JAMA Yıldız D, Bakır A, Ekin S, Özgökçe F. Antioxidant, antiradical properties, vitamin and trace element status of Artemisia spicigera C. Koch distributed in the Türkiye flora. Trakya Univ J Nat Sci. 2025.
MLA Yıldız, Damla vd. “Antioxidant, Antiradical Properties, Vitamin and Trace Element Status of Artemisia Spicigera C. Koch Distributed in the Türkiye Flora”. Trakya University Journal of Natural Sciences, sy. Online First, 2025.
Vancouver Yıldız D, Bakır A, Ekin S, Özgökçe F. Antioxidant, antiradical properties, vitamin and trace element status of Artemisia spicigera C. Koch distributed in the Türkiye flora. Trakya Univ J Nat Sci. 2025(Online First).

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.