Araştırma Makalesi
BibTex RIS Kaynak Göster

Indoor air quality of academia-related workshops based on health complaints

Yıl 2025, Sayı: Online First

Öz

Indoor Air Quality (IAQ) is a result of the interaction between micro-environmental conditions, location, and building characteristics. IAQ directly affects human health, comfort, productivity, and performance. However, very little attention has been paid to the IAQ of nonindustrial workshops.
This cross-sectional survey aimed to determine the IAQ of academia-related workshops based on the factors such as the microbial load (including bacteria, fungi, and actinomycetes), particulate matter (PM) content, presence of chemical pollutants (such as ammonia [NH3], volatile organic compounds [VOCs], and formaldehyde [HCHO]), and physical conditions (such as temperature [T°C], relative humidity [RH%], light intensity, noise, dewpoint and air speed). Moreover, the perception weights of IAQ factors affecting the indoor comfort condition were also examined.
A two-stage viable, Andersen cascade impactor, was used by suctioning air onto the selective culture media. The PM content was determined by using a preweighted membrane filter. Portable air quality monitors were used to estimate the chemical and physical factors. A questionnaire survey was employed to assess the health complaints and the participants’ perception weights on the indoor environmental parameters (such as thermal, acoustic, visual environment, and air quality).
The concentrations of mesophilic bacteria, fungi, and actinomycetes were found to be higher indoors than outdoors, with indoor/outdoor (I/O) values of 3.13, 1.56, and 1.53, respectively. The Global Index of Microbial Contamination/m3 exceeded 7,000 colony forming units/m3 in approximately 46% of the workshop areas. The I/O ratios of PM, VOCs, HCHO, and NH3 were 1.69, 1.52, 0.65, and 0.6, respectively. T°C and RH% values ranged 18–35°C and 40–56%, respectively.
Noise values exceeded 70 dBA in both the indoor and outdoor environments. Light intensity was also unacceptable (≤ 300 lux) at 84.6% of the workshop areas. VOCs and dewpoint revealed significant positive and negative effects on microbial viability, differing with regard to the microbial type. Fatigue (45.5%), allergies (38.6%), and headache (35.2%) were the common complaints of the occupants. All of the tested IAQ parameters influenced the workplace environment, with noise ranking as the main factor (40.9%).
Microbial air quality is differently associated with the indoor environmental factors. The IAQ in the workshops was poor and potentially affected the occupant’s well-being. The perception of comfort varied among the occupants under the same IAQ factors. Thus, corrective actions based on comparative analysis should be implemented to promote the indoor quality of even nonindustrial and academia-related workplaces.

Etik Beyan

Since the article does not contain any studies with human or animal subject, its approval to the ethics committee was not required.

Destekleyen Kurum

National Research Centre

Proje Numarası

grant number 12070103

Kaynakça

  • Abdel Hameed, A., Khoder, M., & Farag, S. (2000). Organic dust and gaseous contaminants at wood working shops. Journal of Environmental Monitoring, 2(1), 73–76. https://doi.org/10.1039/A907102D
  • Abdel Hameed, A., Saeed, Y., El-Gendy, S. A., & Hassan, S. K. (2023). Chemical, physical and microbial parameters inside a research building environment. Egyptian Journal of Chemistry, 66(13), 1489–1498. https://doi.org/10.21608/ EJCHEM.2023.201245.7755
  • Abdel Hameed, A., Saeed, Y., Hassan, Y., Fawzy, Y., & Osman, M. (2018). Air microbial quality in certain public buildings, Egypt: A comparative study. Atmospheric Pollution Research, 9(4), 617–626. https://doi.org/10.1016/j. apr.2017.12.014
  • Abdel-Hamid, M. A., Hakim, A. S., Elokda, S., & Mostafa, S. N. (2013). Prevalence and risk factors of sick building syndrome among office workers. Journal of the Egyptian Public Health Association, 88(2), 109–114. https://doi. org/10.1097/01.EPX.0000431629.28378.c0
  • American Conference of Governmental Industrial Hygienists (ACGIH). (2012). Threshold limit values for chemical substances and physical agents and biological exposure indices. ACGIH.
  • Akova, İ., Kılıç, E., Sümer, H., & Keklikçi, T. (2022). Prevalence of sick building syndrome in hospital staff and its relationship with indoor environmental quality. International Journal of Environmental Health Research, 32(6), 1204–1219. https://doi.org/10.1080/09603123.2020.1862067
  • Alghamdi, A. M., Shamy, M., Redal, M. A., Khoder, M., Abdel Hameed, A., & Elserougy, S. (2014). Microorganisms associated particulate matter: A preliminary study. Science of The Total Environment, 479–480, 109–116. https:// doi.org/10.1016/j.scitotenv.2014.02.006
  • Andersen, A. A. (1958). New sampler for the collection, sizing and enumeration of viable airborne particles. Journal of Bacteriology, 76(5), 471–484. https://doi. org/10.1128/jb.76.5.471-484.1958
  • Andriana, Y., Widodo, A. D. W., & Endraswari, P. D. (2023). A correlation between the number of airborne bacteria and fungi using the settle plate method with temperature and relative humidity at the clinical microbiology laboratory of Dr. Soetomo Regional General Hospital Surabaya, Indonesia. Journal of Pure and Applied Microbiology, 17(2), 942–950. https://doi.org/10.22207/JPAM.17.2.24
  • Apte, K., & Salvi, S. (2016). Household air pollution and its effects on health. F1000Research, 5, F1000 Faculty Rev-2593. https://doi.org/10.12688/ f1000research.7552.1
  • Asadi, I., Mahyuddin, N., & Shafigh, P. (2017). A review on indoor environmental quality (IEQ) and energy consumption in building based on occupant behavior. Facilities, 35(11/12), 684–695. https://doi.org/10.1108/F-06-2016-0062
  • American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). (2010). Standard 55-2010: Thermal environmental conditions for human occupancy. ASHRAE.
  • ASTM International. (2015). Standard test method for measuring humidity with a psychrometer (E337–15). ASTM International.
  • Azuma, K., Kagi, N., Yanagi, U., Kim, H., & Osawa, H. (2022). A longitudinal study on the effects of hygro-thermal conditions and indoor air pollutants on building-related symptoms in office buildings. Indoor Air, 32, e13164. https:// doi.org/10.1111/ina.13164
  • Barnett, H. L., & Hunter, B. B. (1999). Illustrated genera of imperfect fungi (4th ed.). The American Phytopathological Society.
  • Bluyssen, P., de Oliveira Fernandes, E., Fanger, P. O., Groes, L., Clausen, G., Roulet, C. A., Bernhard, C. A., & Valbjørn, Ø. (2005). European audit project to optimise indoor air quality and energy consumption in office buildings. TNO Report. https://www.researchgate.net/publication/37460762
  • Breza–Boruta, B., & Paluszak, Z. (2007). Influence of water treatment plant on microbiological composition of air bioaerosols. Polish Journal of Environmental Studies, 16(5), 663–670.
  • Buljat, A., Čargonja, M., & Mekterović, D. (2024). Source apportionment of particulate matter in a metal workshop. International Journal of Environmental Research and Public Health, 21(6), 768. https://doi.org/10.3390/ijerph21060768
  • Camuffo, D. (2019). Microclimate for cultural heritage: Measurement, risk assessment, conservation, restoration, and maintenance of indoor and outdoor monuments (2nd ed.). Elsevier.
  • California Office of Environmental Health Hazard Assessment. (1999). Ammonia, Appendix D.2: Chronic RELs and toxicity summaries. https://oehha.ca.gov/ media/downloads/crnr/appendixd2final.pdf
  • Commission of the European Communities. (1993). Report No. 12: Biological particles in indoor environments. Luxembourg.
  • Chai, G., He, H., Sha, Y., Zhai, G., & Zong, S. (2019). Effect of PM2.5 on daily outpatient visits for respiratory diseases in Lanzhou, China. Science of The Total Environment, 649, 1563–1572. https://doi.org/10.1016/j.scitotenv.2018.08.384
  • Chawla, H., Anand, P., Garg, K., Bhagat, N., Varmani, S. G., Bansal, T., McBain, A. J., & Marwah, R. G. (2023). A comprehensive review of microbial contamination in the indoor environment: Sources, sampling, health risks, and mitigation strategies. Frontiers in Public Health, 11. https://doi.org/10.3389/ fpubh.2023.1285393
  • Cheng, Y.-H. (2017). Measuring indoor particulate matter concentrations and size distributions at different time periods to identify potential sources in an office building in Taipei City. Building and Environment, 123, 446–457. https://doi. org/10.1016/j.buildenv.2017.07.025
  • Cho, E. M., Hong, H. J., Park, S. H., Yoon, D. K., Goung, S. J. N., & Lee, C. M. (2019). Distribution and influencing factors of airborne bacteria in public facilities used by pollution-sensitive population: A meta-analysis. International Journal of Environmental Research and Public Health, 16, 1483. https://doi. org/10.3390/ijerph16091483
  • Cox, C. S. (1998). The microbiology of air. In L. Collier, A. Balows, & M. Sussman (Eds.), Topley & Wilson’s microbiology and microbial infections (9th ed., pp. 339–350). Arnold, Oxford University Press.
  • Crawford, J. A., Rosenbaum, P. F., Anagnost, S. E., Hunt, A., & Abraham, J. L. (2015). Indicators of airborne fungal concentrations in urban homes: Understanding the conditions that affect indoor fungal exposures. Science of The Total Environment, 517, 113–124. https://doi.org/10.1016/j.scitotenv.2015.02.060
  • Dacarro, C., Grisoli, P., Del, F. G., Villani, S., Grignani, E., & Cotta, D. (2005). Microorganisms and dust exposure in an Italian grain-mill. Journal of Applied Microbiology, 98(1), 163–171. https://doi.org/10.1111/j.1365-2672.2004.02437.x
  • Dehghani, M. H., Bashardoust, P., Zirrahi, F., Ajami, B., Ghalhari, M. R., & others. (2024). Environmental and health effects due to volatile organic compounds. In M. H. Dehghani, R. R. Karri, T. Vera, & S. K. M. Hassan (Eds.), Health effects of indoor air pollution (pp. 191–221). Academic Press. https://doi. org/10.1016/B978-0-443-16090-5.00003-9
  • Dennis, P. J., & Lee, J. V. (1988). Differences in aerosol survival between pathogenic and non-pathogenic strains of Legionella pneumophila serogroup 1. Journal of Applied Bacteriology, 65, 135–141. https://doi.org/10.1111/j.1365-2672.1988. tb01501.x
  • DiBernardino, A., Iannarelli, A. M., Casadio, S., Perrino, C., Barnaba, F., Tofful, L., & others. (2021). Impact of synoptic meteorological conditions on air quality in three different case studies in Rome, Italy. Atmospheric Pollution Research, 12(4), 76–88. https://doi.org/10.1016/j.apr.2021.02.019
  • DiCarlo, E., Chisesi, R., Barresi, G., Barbaro, S., Lombardo, G., Rotolo, V., Sebastianelli, M., Travagliato, G., & Palla, F. (2016). Fungi and bacteria in indoor cultural heritage environments: Microbial-related risks for artworks and human health. Environment and Ecology Research, 4(5), 257–264. https://doi. org/10.13189/eer.2016.040504
  • Donaldson, A. I., & Ferris, N. P. (1975). Survival of foot-and-mouth disease virus in open air conditions. The Journal of Hygiene, 74(3), 409–416. https://doi. org/10.1017/s002217240004691x
  • Dong, T., Zhang, Y., Jia, S., Shang, H., Fang, W., Chen, D., & Fang, M. (2019). Human indoor exposome of chemicals in dust and risk prioritization using EPA’s ToxCast database. Environmental Science & Technology, 53(12), 7045–7054. https://doi.org/10.1021/acs.est.9b00280
  • Dylag, M. (2017). Fungi present in home and their impact on human health-A short review. Insights in Biology and Medicine, 1(1), 016 -025. https://doi. org/10.29328/journal.hjbm.1001003
  • Egyptian Environmental Affairs Agency (EEAA). (1994). Law No. 4/1994 Promulgating the Environment Law and its Executive Regulation. Presidential Decree (4), 130. http://extwprlegs1.fao.org/docs/pdf/egy4984E.pdf
  • Ellis, M. B. (1971). Dematiaceous hyphomycetes (p. 608). The Western Press Ltd.
  • Erkara, I. P., Asan, A., Yilmaz, V., Pehlivan, S., & Okten, S. S. (2008). Airborne Alternaria and Cladosporium species and relationship with meteorological conditions in Eskisehir City, Turkey. Environmental Monitoring and Assessment, 144, 31–41. https://doi.org/10.1007/s10661-007-9939-0
  • Fang, L., Liu, N., Liu, W., Mo, J., Zhao, Z., Kan, H., Deng, F., Huang, C., Zhao, B., & others. (2022). Indoor formaldehyde levels in residences, schools, and offices in China in the past 30 years: A systematic review. Indoor Air, 32(10), e13141. https://doi.org/10.1111/ina.13141
  • Felgueiras, F., Mourão, Z., Moreira, A., & Fonseca-Gabriel, M. (2023). Indoor environmental quality in offices and risk of health and productivity complaints at work: A literature review. Journal of Hazardous Materials Advances, 10, 100314. https://doi.org/10.1016/j.hazadv.2023.100314
  • Frohlich-Nowoisky, J., Nespoli, C. R., Pickersgill, D. A., Galand, P. E., Muller- Germann, I., Nunes, T., Cardoso, J. G., Almeida, S. M., Pio, C., & others. (2014). Diversity and seasonal dynamics of airborne archaea. Biogeosciences, 11, 6067– 6079. https://doi.org/10.5194/bg-11-6067-2014
  • GB/T 18883. (2002). Indoor air quality standard. National Standard of China. https://www.chinesestandard.net/PDF.aspx/GBT18883-2002
  • Gilbert, Y., & Duchaine, C. (2009). Bioaerosols in industrial environments: A review. Canadian Journal of Civil Engineering, 36(12), 1873–1886. https://doi. org/10.1139/L09-117
  • Grisoli, P., Albertoni, M., & Rodolfi, M. (2019). Application of airborne microorganism indexes in offices, gyms, and libraries. Applied Sciences, 9(6), 1101. https://doi.org/10.3390/app9061101
  • Hambleton, P., Broster, M., Dennis, P., Henstridge, R., Fitzgeorge, R., & Conlan, J. (1983). Survival of virulent Legionella pneumophila in aerosols. Journal of Hygiene, 90(3), 451–460. https://doi.org/10.1017/s0022172400029090
  • Hansen, D. L. (1999). Indoor air quality issues. Taylor and Francis.
  • Hatch, M. T., Wright, D. N., & Bailey, G. D. (1970). Response of airborne Mycoplasma pneumoniae to abrupt changes in relative humidity. Applied Microbiology, 19(2), 232–238. https://doi.org/10.1128/am.19.2.232-238.1970
  • Hoekstra, E. S., Samson, R. A., & Verhoeff, A. P. (1994). Fungal propagules in house dust: A qualitative analysis. In Health implications of fungi in indoor environments (pp. 169–177). Elsevier Science B.V.
  • Holmberg, K. (1987). Indoor mould exposure and health effects. In B. Seifen, H. Esdorn, M. Fischer, H. Ruden, & J. Wegner (Eds.), Proceedings of Indoor Air ‘87 (Vol. 1, pp. 637–642). Institute of Water, Soil and Air Hygiene.
  • Holøs, S. B., Yang, A., Lind, M., Thunshelle, K., Schild, P., & Mysen, M. (2018). VOC emission rates in newly built and renovated buildings, and the influence of ventilation – A review and meta-analysis. International Journal of Ventilation, 18(3), 153–166. https://doi.org/10.1080/14733315.2018.1435026
  • Horner, W. E. (2006). Managing building-related Aspergillus exposure. Medical Mycology, 44(1), S33–S38. https://doi.org/10.1080/13693780600925194
  • Health and Safety Executive (HSE). (2018). Workplace exposure limits: EH40/2005 (3rd ed.). HSE Books.
  • Hurst, C. I., Knudsen, G. T., McInerney, M. J., Stetzenbach, L. D., & Walter, M. V. (2007). Manual of environmental microbiology (pp. 661–663). ASM Press.
  • Insley, A. L., Maskrey, J. R., Hallett, L. A., Reid, R. C., Hynds, E. S., Winter, C., & Panko, J. M. (2019). Occupational survey of airborne metal exposures to welders, metalworkers, and bystanders in small fabrication shops. Journal of
  • Occupational and Environmental Hygiene, 16(6), 410–421. https://doi.org/10.10 80/15459624.2019.1603389
  • International Agency for Research on Cancer (IARC). (2006). Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol (IARC monographs on the evaluation of carcinogenic risks to humans, Vol. 88).
  • International Society of Indoor Air Quality and Climate, Scientific and Technical Committee 34. (2025). Indoor environmental quality guidelines database. https:// ieqguidelines.org/
  • Jabeen, R., Kizhisseri, M. I., Mayanaik, S. N., & Mohamed, M. M. (2023). Bioaerosol assessment in indoor and outdoor environments: A case study from India. Scientific Reports, 13, Article 18066. https://doi.org/10.1038/s41598-023- 44315-z
  • Juda-Rezler, K., Reizer, M., Maciejewska, K., Błaszczak, B., & Klejnowski, K. (2020). Characterization of atmospheric PM2.5 sources at a Central European urban background site. Science of The Total Environment, 713, 136729. https:// doi.org/10.1016/j.scitotenv.2020.136729
  • Kadaifciler, D. G. (2017). Bioaerosols assessment in the library of Istanbul University and fungal flora associated with paper deterioration. Aerobiologia, 33(1), 151–166. https://doi.org/10.1007/s10453-016-9457-z
  • Kang, S., Ou, D., & Mak, C. M. (2017). The impact of indoor environmental quality on work productivity in university open-plan research offices. Building and Environment, 124, 78–89. https://doi.org/10.1016/j.buildenv.2017.07.003
  • Karbowska-Berent, J., Górny, R. L., Strzelczyk, A. B., & Wlazło, A. (2011). Airborne and dust borne microorganisms in selected Polish libraries and archives. Building and Environment, 46(10), 1872–1879. https://doi.org/10.1016/j. buildenv.2011.03.007
  • Kim, K.-H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143. https:// doi.org/10.1016/j.envint.2014.10.005
  • Krinsky, N. I. (1976). Cellular damage initiated by visible light. In The survival of vegetative microbes: Symposium of the Society for General Microbiology (Vol. 26, pp. 209–239). [Google Scholar]
  • Krueger, A. P., Kotaka, S., & Andriese, P. C. (1969). Atmospheric ions and aerosols. In R. I. Dimmick & A. B. Akers (Eds.), An introduction to experimental aerobiology (pp. 100–112). Wiley Interscience.
  • Kumar, P., & Imam, B. (2013). Footprints of air pollution and changing environment on the sustainability of built infrastructure. Science of The Total Environment, 444, 85–101. https://doi.org/10.1016/j.scitotenv.2012.11.056
  • Kumar, P., Kausar, A. M., Singh, A. B., & Singh, R. (2021). Biological contaminants in the indoor air environment and their impacts on human health. Air Quality, Atmosphere & Health, 14(11), 1723–1736. https://doi.org/10.1007/ s11869-021-00978-z
  • Lacey, J., & Crook, B. (1988). Fungal and actinomycete spores as pollutants of the workplace and occupational allergens. Annals of Occupational Hygiene, 32, 515–533. https://doi.org/10.1093/annhyg/32.4.515
  • Lacey, J., & Dutkiewicz, J. (1994). Bioaerosols and occupational lung disease. Journal of Aerosol Science, 25(8), 1371–1404. https://doi.org/10.1016/0021- 8502(94)90215-1
  • Lacey, J., Ramakrishna, N., Hamer, A., Magan, N., & Marfleet, I. (1991). Grain fungi. In D. K. Arora, K. G. Mukerji, & E. H. Marth (Eds.), Handbook of Applied Mycology (Vol. 3, pp. 121–177). Marcel Dekker.
  • Lai, A. C. K., & Nazaroff, W. W. (2000). Modeling indoor particle deposition from turbulent flow onto smooth surfaces. Journal of Aerosol Science, 31(4), 463–476. https://doi.org/10.1016/S0021-8502(99)00536-4
  • Lan, L., Wargocki, D. P., Wyon, D. P., & Lian, Z. (2011). Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance. Indoor Air, 21(5), 376–390. https://doi. org/10.1111/j.1600-0668.2011.00714.x
  • Langer, S., & Bekö, G. (2013). Indoor air quality in the Swedish housing stock and its dependence on building characteristics. Building and Environment, 69, 44–54. https://doi.org/10.1016/j.buildenv.2013.07.013
  • Lefferts, M. J., & Castell, M. R. (2022). Ammonia breath analysis. Sensors and Diagnostics, 1, 955–967. https://doi.org/10.1039/D2SD00089J
  • Levetin, E., & Dorsey, K. (2006). Contribution of leaf surface fungi to the air spora. Aerobiologia, 22, 3–12. https://doi.org/10.1007/s10453-005-9012-9
  • Li, M., Weschler, C. J., Bekö, G., Wargocki, P., Lucic, G., & Williams, J. (2020). Human ammonia emission rates under various indoor environmental conditions. Environmental Science & Technology, 54(9), 5419–5428. https://doi.org/10.1021/ acs.est.0c00094
  • Li, J., Xu, W., You, B., & Sun, Y. (2022). Dynamic variations of ammonia in various life spaces and seasons and the influences of human activities. Building and Environment, 212, 108820. https://doi.org/10.1016/j.buildenv.2022.108820
  • Lighthart, B., & Shaffer, B. T. (1997). Increased airborne bacterial survival as a function of particle content and size. Aerosol Science and Technology, 27, 439– 446. https://doi.org/10.1080/02786829708965483
  • Lippai, A., Leelőssy, Á., & Magyar, D. (2024). Indoor and outdoor air microbial contamination during different reconstruction methods of historic buildings. Pathogens, 13(12), 1048. https://doi.org/10.3390/pathogens13121048
  • Liu, T., Lin, Y., Chen, J., Chen, G., Yang, C., Xu, L., Li, M., Fan, X., Zhang, F., & Hong, Y. (2023). Pollution mechanisms and photochemical effects of atmospheric HCHO in a coastal city of southeast China. Science of The Total Environment, 859(Part 1), 160210. https://doi.org/10.1016/j.scitotenv.2022.160210
  • Loukou, E., Jensen, N. F., Rohde, L., & Andersen, B. (2024). Damp buildings: Associated fungi and how to find them. Journal of Fungi, 10(2), 108. https://doi. org/10.3390/jof10020108
  • Macher, J. M., et al. (1995). Sampling airborne microorganisms and aeroallergens. In B. S. Cohen & S. V. Hering (Eds.), Air sampling instruments for evaluation of atmospheric contaminants (8th ed., pp. 589–617). ACGIH.
  • MacIntosh, D. L., Brightman, H. S., Baker, B. J., Myatt, T. A., Stewart, J. H., & McCarthy, J. F. (2006). Airborne fungal spores in a cross-sectional study of office buildings. Journal of Occupational and Environmental Hygiene, 3(7), 379–389. https://doi.org/10.1080/10543400600760438
  • Mackiewicz, B., Skórska, C., & Dutkiewicz, J. (2015). Relationship between concentrations of microbiological agents in the air of agricultural settings and occurrence of work-related symptoms in exposed persons. Annals of Agricultural and Environmental Medicine, 22(3), 473–477. https://doi. org/10.5604/12321966.1167717
  • Mangotra, A., & Singh, S. K. (2024). Volatile organic compounds: A threat to the environment and health hazards to living organisms – A review. Journal of Biotechnology, 382, 51–69. https://doi.org/10.1016/j.jbiotec.2023.12.013
  • Matthias-Maser, S. (1998). Primary biological aerosol particles: Their significance, sources, sampling methods, and size distribution in the atmosphere. In R. M. Harrison & R. E. Van Grieken (Eds.), Environmental particles (pp. 349–369). Wiley.
  • Melymuk, L., Demirtepe, H., & Rozárka Jílková, S. (2020). Indoor dust and associated chemical exposures. Current Opinion in Environmental Science & Health, 15, 1–6. https://doi.org/10.1016/j.coesh.2020.01.005
  • Mendell, M. J., Naco, G. M., Wilcox, T. G., & Sieber, W. K. (2003). Environmental risk factors and work-related lower respiratory symptoms in 80 office buildings: An exploratory analysis of NIOSH data. American Journal of Industrial Medicine, 43(6), 630–641. https://doi.org/10.1002/ajim.10211
  • Miller, J. D., Laflamme, A. M., Sobol, Y., Lafontaine, P., & Greenhalgh, R. (1988). Fungi and fungal products in some Canadian houses. International Biodeterioration, 24(2), 103–120. https://doi.org/10.1016/0265- 3036(88)90053-X
  • Missia, D., Demetriou, E., Michael, N., Tolis, E. I., & Bartzis, J. G. (2010). Indoor exposure from building materials: A field study. Atmospheric Environment, 44(35), 4388–4395. https://doi.org/10.1016/j.atmosenv.2010.07.049
  • Morawska, L., & Salthammer, T. (2003). Fundamentals of indoor particles and settled dust. In L. Morawska & T. Salthammer (Eds.), Indoor environment (pp. 1–36). Wiley-VCH.
  • Mousavi, B., Hedayati, M. T., Hedayati, N., Ilkit, M., & Syedmousavi, S. (2016). Aspergillus species in indoor environments and their possible occupational and public health hazards. Current Medical Mycology, 2(1), 36–42. https://doi. org/10.18869/acadpub.cmm.2.1.36
  • Murdoch, L. E., McKenzie, K., Maclean, M., MacGregor, S. J., & Anderson, J. G. (2013). Lethal effects of high-intensity violet 405-nm light on Saccharomyces cerevisiae, Candida albicans, and on dormant and germinating spores of Aspergillus niger. Fungal Biology, 117(7), 519–527. https://doi.org/10.1016/j. funbio.2013.05.004
  • Nath, A., Baruah, N., Nonglait, M. L., et al. (2023). Biological contaminants in indoor environments of educational institutions. Aerobiologia, 39, 1–20. https:// doi.org/10.1007/s10453-022-09771-6
  • Nazaroff, W. W., & Weschler, C. J. (2004). Cleaning products and air fresheners; Exposure to primary and secondary air pollutants. Atmospheric Environment, 38(18), 2841–2865. https://doi.org/10.1016/j.atmosenv.2004.02.040
  • Nevalainen, A., Pasanen, A.-L., Niininen, M., Reponen, T., Jantunen, M. J., & Kalliokoski, P. (1991). The indoor air quality in Finnish homes with mold problems. Environment International, 17, 299–302. https://doi.org/10.1016/0160- 4120(91)90015-I
  • Nevalainen, A., Heinonen-Tanski, H., & Savolainen, R. (1990). Indoor and outdoor occurrence of Pseudomonas bacteria. In Indoor Air ’90: Proceedings of the Fifth International Conference on Indoor Air Quality and Climate (Vol. 2, pp. 51–53). Canada Mortgage and Housing Corporation.
  • National Institute for Occupational Safety and Health. (1998). NIOSH method 0800: NIOSH manual of analytical methods.
  • Norbäck, D. (2009). An update on sick building syndrome. Current Opinion in Allergy and Clinical Immunology, 9(1), 55–59. https://doi.org/10.1097/ ACI.0b013e32831f8f08
  • NP 061. (2002). Normativ pentru proiectarea şi executarea sistemelor de iluminat artificial din clădiri.
  • Nurmatov, U. B., Tagiyeva, N., Semple, S., Devereux, G., & Sheikh, A. (2015). Volatile organic compounds and risk of asthma and allergy: A systematic review. European Respiratory Review, 24(135), 92–101. https://doi. org/10.1183/09059180.00000714
  • Ohgke, H., Geers, A., & Beckert, J. (1987). Fungal load of indoor air in historical and newly constructed buildings used by public services. In Proceedings of the 4th International Conference on Indoor Air Quality and Climate (Vol. 1, pp. 681–684).
  • Occupational Safety and Health Administration (OSHA). (n.d.). Reiteration of existing OSHA policy on indoor air quality: Office temperature/humidity and environmental tobacco smoke. https://www.osha.gov (Accessed February 24, 2025)
  • Occupational Safety and Health Administration. (1992). Technical manual. U.S. Department of Labor.
  • Osman, M. E., Abdel Hameed, A. A., Ibrahim, H. Y., Yousef, F., Abo Elnasr, A. A., & Saeed, Y. (2017). Air microbial contamination and factors affecting its occurrence in certain book libraries in Egypt. Egyptian Journal of Botany, 57(1), 93–118. https://doi.org/10.21608/ejbo.2016.277.1007
  • Pacharra, M., Kleinbeck, S., Schäper, M., et al. (2016). Multidimensional assessment of self-reported chemical intolerance and its impact on chemosensory effects during ammonia exposure. International Archives of Occupational and Environmental Health, 89, 947–959. https://doi.org/10.1007/s00420-016-1134-6
  • Park, M., Joo, H. S., Lee, K., Jang, M., Kim, S. D., Kim, I., Borlaza, L. J. S., Lim, H., Shin, H., Chung, K. H., Choi, Y. H., Park, S. G., Bae, M. S., Lee, J., Song, H., & Park, K. (2018). Differential toxicities of fine particulate matters from various sources. Scientific Reports, 8(1), 17007. https://doi.org/10.1038/ s41598-018-35398-0
  • Pepper, I. L., & Gerba, C. P. (2015). Aeromicrobiology. In Environmental microbiology (pp. 89–110). https://doi.org/10.1016/B978-0-12-394626-3.00005- 3
  • Pitt, I. J., & Hocking, A. (2009). Fungi and food spoilage. Springer. https://doi. org/10.1007/978-0-387-92207-2
  • Platt, S. D., Martin, C. J., Hunt, S. M., & Lewis, C. W. (1989). Damp housing, mould growth and symptomatic health state. British Medical Journal, 298, 1673– 1678. https://doi.org/10.1136/bmj.298.6689.1673
  • Polish Standards. (1989). PN-89/Z-04111/03 Protection of air cleanness – Enumeration of microscopic fungi in atmospheric air (in Polish).
  • Pyrri, I., Zoma, A., Barmparesos, N., Assimakopoulos, M. N., Assimakopoulos, V. D., & Kapsanaki-Gotsi, E. (2020). Impact of a green roof system on indoor fungal aerosol in a primary school in Greece. Science of The Total Environment, 719, 137447. https://doi.org/10.1016/j.scitotenv.2020.137447
  • Quintana, Á. R., Seseña, S., Garzón, A., & Arias, R. (2020). Factors affecting levels of airborne bacteria in dairy farms: A review. Animals, 10(3), 526. https:// doi.org/10.3390/ani10030526
  • Quintanilla-Martinez, A., Aguirre-Gutron, L., Espinosa-Chaurand, L., Diaz- Ramirez, M., & Cortes-Sánchez, A. (2022). Microbiological analysis of the air in a popular fish processing and marketing area. Applied Biosciences, 1(3), 299– 314. https://doi.org/10.3390/applbiosci1030019
  • Rai, S., Singh, D. K., & Kumar, A. (2021). Microbial, environmental and anthropogenic factors influencing the indoor microbiome of the built environment. Journal of Basic Microbiology, 61(4), 265–361. https://doi.org/10.1002/ jobm.202000575
  • Raper, K. B., & Fennell, D. I. (1977). The genus Aspergillus. R. E. Krieger Publishing Company.
  • Reponen, T. A., Gazenko, S. V., Grinshpun, S. A., Willeke, K., & Cole, E. C. (1998). Characteristics of airborne actinomycete spores. Applied and Environmental Microbiology, 64(10), 3807–3812. https://doi.org/10.1128/ AEM.64.10.3807-3812.1998
  • Reynolds, S. J., Streifel, A. J., & McJilton, C. E. (1990). Elevated airborne concentrations of fungi in residential and office environments. American Industrial Hygiene Association Journal, 51(11), 601–604. https://doi. org/10.1080/15298669091370185
  • Rintala, H. (2011). Actinobacteria in indoor environments: Exposures and respiratory health effects. Frontiers in Bioscience-Scholar, 3(1), 1273–1284. https://doi.org/10.2741/225
  • Rodriguez-Rajo, F. J., Iglesias, I., & Jato, V. (2005). Variation assessment of airborne Alternaria and Cladosporium spores at different bioclimatical conditions. Mycological Research, 109(Pt. 4), 497–507. https://doi.org/10.1017/ S0953756204001777
  • Romano, S. (2023). Bioaerosols: Composition, meteorological impact and transport. Atmosphere, 14(3), 590. https://doi.org/10.3390/atmos14030590
  • Roshan, S. K., Godini, H., Nikmanesh, B., Bakhshi, H., & Charsizadeh, A. (2019). Study on the relationship between the concentration and type of fungal bioaerosols at indoor and outdoor air in the children’s medical center, Tehran, Iran. Environmental Monitoring and Assessment, 191(2), 48. https://doi.org/10.1007/ s10661-018-7183-4
  • Roumi, S., Zhang, F., Stewart, R. A., & Santamouris, M. (2022). Commercial building indoor environmental quality models: A critical review. Energy and Buildings, 263(3), 112033. https://doi.org/10.1016/j.enbuild.2022.112033
  • Sabariego, S., Díaz de la Guardia, C., & Alba, F. (2000). The effect of meteorological factors on the daily variation of air-borne fungal spores in Granada (southern Spain). International Journal of Biometeorology, 44, 1–5. https://doi. org/10.1007/s004840050131
  • Salthammer, T., Mentese, S., & Marutzky, R. (2010). Formaldehyde in the indoor environment. Chemical Reviews, 110(4), 2536–2572. https://doi.org/10.1021/ cr800399g
  • Schäffer, J., Trautman, C., Dill, I., Fischer, G., et al. (2009). Actinomycetes in indoor environments. Gefahrstoffe Reinhaltung der Luft, 69(9), 335–341.
  • Shiferaw, T., Gebre-Silasse, L., Mulisa, G., Zewidu, A., Belachew, F., Muleta, D., & Zemene, E. (2016). Bacterial indoor-air load and its implications for healthcare-acquired infections in a teaching hospital in Ethiopia. International Journal of Infection Control, 12(1). https://doi.org/10.3396/ijic.v12i1.15808
  • Sillanpää, M., Saarikoski, S., Hillamo, R., Pennanen, A., Makkonen, U., Spolnik, Z., Van Grieken, R., Koskentalo, T., & Salonen, R. O. (2005). Chemical composition, mass size distribution and source analysis of long-range transported wildfire smokes in Helsinki. Science of The Total Environment, 350(1–3), 119– 135. https://doi.org/10.1016/j.scitotenv.2005.01.024
  • Smets, W., Moretti, S., Denys, S., & Lebeer, S. (2016). Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmospheric Environment, 139, 214–221. https://doi.org/10.1016/j.atmosenv.2016.05.038
  • Soleimani, M., Shiran, F., Amir, S., & Jalali, H. (2022). Spatial and temporal variation of bacterial population in ambient air particulate matters (PM2.5, PM10 and TSP) of Isfahan city, Iran. Journal of Air Pollution and Health, 7(3), 261– 274. https://doi.org/10.18502/japh.v7i3.10540
  • Spinazzè, A., Campagnolo, D., Cattaneo, A., Urso, P., Sakellaris, I. A., Saraga, D. E., Mandin, C., et al. (2020). Indoor gaseous air pollutants determinants in office buildings – The OFFICAIR project. Indoor Air, 30, 76–87. https://doi. org/10.1111/ina.12609
  • Sulaiman, M. A., Wan Yusoff, W. Z., & Wan Kamarudin, W. N. (2013). Evaluation of indoor environmental quality (IEQ) on dense academia Universiti Tun Hussein Onn Malaysia. International Journal of Scientific and Research Publications, 3(1), 1–5. https://www.ijsrp.org/research-paper-1301.php?rp=P13622
  • Sun, C., Cai, Y., Chen, J., Li, J., Su, C., Zou, Z., & Huang, C. (2024). Indoor ammonia concentrations in college dormitories and the health effects. Journal of Building Engineering, 84, 108556. https://doi.org/10.1016/j.jobe.2024.108556
  • Sun, C., Hong, S., Cai, G., Zhang, Y., Kan, H., Zhao, Z., Deng, F., Zhao, B., Zeng, X., Sun, Y., Qian, H., Liu, W., Mo, J., Guo, J., Zheng, X., Su, C., Zou, Z., Li, H., & Huang, C. (2021). Indoor exposure levels of ammonia in residences, schools, and offices in China from 1980 to 2019: A systematic review. Indoor Air, 31(6), 1691–1706. https://doi.org/10.1111/ina.12864
  • Tang, J. W. (2009). The effect of environmental parameters on the survival of airborne infectious agents. Journal of the Royal Society Interface, 6(6), S737– S746. https://doi.org/10.1098/rsif.2009.0227.focus
  • Tang, H., Ding, Y., & Singer, B. (2020). Interactions and comprehensive effect of indoor environmental quality factors on occupant satisfaction. Building and Environment, 167, 106462. https://doi.org/10.1016/j.buildenv.2019.106462
  • Tiwari, A., Pandey, M., Tirkey, A., Tiwari, A., Dubey, R., & Pandey, S. K. (2024). Image-based analytical approaches for study of particulate matter (PM) in air. Frontiers in Environmental Science, 12, 1362422. https://doi.org/10.3389/ fenvs.2024.1362422
  • Thorne, P. S. (2019). Industrial livestock production facilities: Airborne emissions. In J. Nriagu (Ed.), Encyclopedia of Environmental Health (2nd ed., pp. 652–660). https://doi.org/10.1016/B978-0-12-409548-9.11862-7
  • Tran, V. V., Park, D., & Lee, Y. C. (2020). Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air. International Journal of Environmental Research and Public Health, 17(8), 2927. https://doi.org/10.3390/ijerph17082927
  • Tuomi, T., & Vainiotalo, S. (2016). The guideline and target values for total volatile organic compound concentrations in industrial indoor environments in Finland. Indoor and Built Environment, 25(2), 424–434. https://doi. org/10.1177/1420326X14554270
  • Tyagi, S., & Srivastava, A. (2023). Characterization of size-segregated fungal bioaerosols in and around a sugar mill of Western Uttar Pradesh, India. Research Square. https://doi.org/10.21203/rs.3.rs-2407544/v1
  • U.S. Environmental Protection Agency (U.S. EPA). (2025a). Indoor air quality (IAQ). https://www.epa.gov/indoor-air-quality-iaq (Accessed January 2025)
  • U.S. Environmental Protection Agency (U.S. EPA). (2025b). Biological pollutants’ impact on indoor air quality. https://www.epa.gov/indoor-air-quality-iaq/biological-pollutants-impact-indoor-air-quality (Accessed January 2025)
  • Verreault, D., Duchaine, C., Marcoux-Voiselle, M., Turgeon, N., & Roy, C. J. (2014). Design of an environmentally controlled rotating chamber for bioaerosol aging studies. Inhalation Toxicology, 26(9), 554–558. https://doi.org/10.3109/0 8958378.2014.928763
  • Wilkie, A. D., Venz, L., & Letters, S. (2023). Outdoor airborne fungal spores in Queensland, Australia. Journal of Bacteriology & Mycology: Open Access, 11(1), 24–32. https://doi.org/10.15406/jbmoa.2023.11.00339
  • World Health Organization. (2000). Air quality guidelines for Europe (2nd ed.). WHO Regional Publications, European Series No. 91.
  • World Health Organization. (2001). International classification of functioning, disability and health (pp. 1–303). World Health Organization.
  • World Health Organization. (2010). Guidelines for indoor air quality: Selected pollutants. Geneva: WHO.
  • Wolkoff, P. (2008). “Healthy eye” in office-like environments. Environment International, 34(8), 1204–1214. https://doi.org/10.1016/j.envint.2008.04.005
  • Won, E., & Ross, H. (1969). Reaction of airborne Rhizobium meliloti to some environmental factors. Applied Microbiology, 18, 555–557. https://doi. org/10.1128/am.18.4.555-557.1969
  • Wu, Q., Li, N., Cai, X., He, Y., & Du, Y. (2023). Impact of indoor environmental quality (IEQ) factors on occupants’ environmental perception and satisfaction in hospital wards. Building and Environment, 245, 110918. https://doi. org/10.1016/j.buildenv.2023.110918
  • Wyer, E. K., Kelleghan, B. D., Blanes-Vidal, V., Schauberger, G., & Curran, P. T. (2022). Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. Journal of Environmental Management, 323, 116285. https://doi.org/10.1016/j. jenvman.2022.116285
  • Zhang, H., Sun, W., Li, W., & Wang, Y. (2022). Physical and chemical characterization of fugitive particulate matter emissions of the iron and steel industry. Atmospheric Pollution Research, 13(1), 101272. https://doi. org/10.1016/j.apr.2021.101272
  • Zhong, X., Qi, J. H., Li, H. T., Dong, L. J., & Gao, D. M. (2016). Seasonal distribution of microbial activity in bioaerosols in the outdoor environment of the Qingdao coastal region. Atmospheric Environment, 140(Suppl. 1), 506–513. https://doi.org/10.1016/j.atmosenv.2016.06.034
  • Zhu, Y., Guo, S., & Liang, W. (2024). A literature review investigating the impact of temperature and humidity on volatile organic compound emissions from building materials. Building and Environment, 262, 111845. https://doi. org/10.1016/j.buildenv.2024.111845
Yıl 2025, Sayı: Online First

Öz

İç Hava Kalitesi (IAQ), mikro çevre koşulları, konum ve bina özellikleri arasındaki etkileşimin bir sonucu olup, insan performansını ve sağlığını etkiler. Endüstriyel olmayan atölyelerin IAQ çok az dikkat edilmiştir. IAQ, insan sağlığını, konforunu ve üretkenliğini doğrudan etkiler.
Akademi ile ilgili atölyelerde IAQ faktörlerini belirlemek için kesitsel bir araştırma yapılmıştır. IAQ faktörleri mikrobiyal (bakteriler, mantarlar ve aktinomisetler), partikül madde (PM), kimyasal [amonyak (NH3), uçucu organik bileşikler (VOC) ve formaldehit (HCHO)] ve fiziksel (sıcaklık [T°C], bağıl nem [RH%], ışık yoğunluğu, gürültü, çiğlenme noktası ve hava hızı) düzeyleri açısından incelenmiş ve iç mekan konforunu etkileyen IAQ faktörlerinin algılama ağırlıkları değerlendirilmiştir.
Seçici kültür ortamlarına hava emerek iki aşamalı Andersen numune alıcı kullanılmıştır. PM, önceden tartılmış membran filtre kullanılarak ölçülmüştür. Kimyasal ve fiziksel faktörleri ölçmek için taşınabilir hava kalitesi monitörleri kullanılmıştır. Sağlık şikayetlerini ve katılımcıların iç ortam parametrelerine (termal, akustik, görsel ortam ve hava kalitesi) ilişkin algı ağırlıklarını belirlemek için bir anket kullanılmıştır.
İç mekanlarda dış mekanlara göre mezofilik bakteriler mantar ve aktinomisetlerin konsantrasyonlarının daha yüksek olduğunu ortaya koymuştur. İç mekan/dış mekan (I/O) değerleri sırasıyla 3,13, 1,56 ve 1,53 olarak ölçülmüştür. Mikrobiyal Kontaminasyon Küresel Endeksi/ m3 atölyelerin yaklaşık %46’sında 7000 koloni oluşturan birim/ m3’yi aşmıştır. PM, VOCs, HCHO ve NH3’ün I/O oranları sırasıyla 1,69; 1,52; 0,65 ve 0,6 olarak ölçülmüştür. T°C ve RH% değerleri sırasıyla 18-35°C ve 40-56% arasında değişmiştir. Gürültü değerleri iç ve dış ortamda 70 desibel (dBA) değerini aşmıştır. Işık yoğunluğu atölyelerin %84,6’sında kabul edilemez düzeyde (≤ 300 lux) idi. VOC’ler ve çiğlenme noktası, mikrobiyal canlılık üzerinde önemli pozitif ve negatif etkiler göstermiş, mikrobiyal türe göre farklılık göstermiştir. Yorgunluk (%45,5), alerji (%38,6) ve baş ağrısı (%35,2) katılımcılar arasında en sık görülen sağlık şikayetleriydi. Tüm IAQ parametreleri işyeri ortamını etkilemiş olup, gürültü katılımcıların konforunu etkileyen ana faktör (%40,9) olarak sıralanmıştır.
Mikrobiyal hava kalitesi, iç ortam faktörleriyle farklı şekilde ilişkiliydi. Atölyelerde IAQ kötüydü ve katılımcıların’ refahını potansiyel olarak etkiledi. Aynı IAQ faktörleri altında katılımcılar arasında konfor algısı farklılık gösterdi. Karşılaştırmalı analiz yoluyla, işyerlerinin iç ortam kalitesini iyileştirmek için düzeltici önlemler alınmalıdır.

Proje Numarası

grant number 12070103

Kaynakça

  • Abdel Hameed, A., Khoder, M., & Farag, S. (2000). Organic dust and gaseous contaminants at wood working shops. Journal of Environmental Monitoring, 2(1), 73–76. https://doi.org/10.1039/A907102D
  • Abdel Hameed, A., Saeed, Y., El-Gendy, S. A., & Hassan, S. K. (2023). Chemical, physical and microbial parameters inside a research building environment. Egyptian Journal of Chemistry, 66(13), 1489–1498. https://doi.org/10.21608/ EJCHEM.2023.201245.7755
  • Abdel Hameed, A., Saeed, Y., Hassan, Y., Fawzy, Y., & Osman, M. (2018). Air microbial quality in certain public buildings, Egypt: A comparative study. Atmospheric Pollution Research, 9(4), 617–626. https://doi.org/10.1016/j. apr.2017.12.014
  • Abdel-Hamid, M. A., Hakim, A. S., Elokda, S., & Mostafa, S. N. (2013). Prevalence and risk factors of sick building syndrome among office workers. Journal of the Egyptian Public Health Association, 88(2), 109–114. https://doi. org/10.1097/01.EPX.0000431629.28378.c0
  • American Conference of Governmental Industrial Hygienists (ACGIH). (2012). Threshold limit values for chemical substances and physical agents and biological exposure indices. ACGIH.
  • Akova, İ., Kılıç, E., Sümer, H., & Keklikçi, T. (2022). Prevalence of sick building syndrome in hospital staff and its relationship with indoor environmental quality. International Journal of Environmental Health Research, 32(6), 1204–1219. https://doi.org/10.1080/09603123.2020.1862067
  • Alghamdi, A. M., Shamy, M., Redal, M. A., Khoder, M., Abdel Hameed, A., & Elserougy, S. (2014). Microorganisms associated particulate matter: A preliminary study. Science of The Total Environment, 479–480, 109–116. https:// doi.org/10.1016/j.scitotenv.2014.02.006
  • Andersen, A. A. (1958). New sampler for the collection, sizing and enumeration of viable airborne particles. Journal of Bacteriology, 76(5), 471–484. https://doi. org/10.1128/jb.76.5.471-484.1958
  • Andriana, Y., Widodo, A. D. W., & Endraswari, P. D. (2023). A correlation between the number of airborne bacteria and fungi using the settle plate method with temperature and relative humidity at the clinical microbiology laboratory of Dr. Soetomo Regional General Hospital Surabaya, Indonesia. Journal of Pure and Applied Microbiology, 17(2), 942–950. https://doi.org/10.22207/JPAM.17.2.24
  • Apte, K., & Salvi, S. (2016). Household air pollution and its effects on health. F1000Research, 5, F1000 Faculty Rev-2593. https://doi.org/10.12688/ f1000research.7552.1
  • Asadi, I., Mahyuddin, N., & Shafigh, P. (2017). A review on indoor environmental quality (IEQ) and energy consumption in building based on occupant behavior. Facilities, 35(11/12), 684–695. https://doi.org/10.1108/F-06-2016-0062
  • American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). (2010). Standard 55-2010: Thermal environmental conditions for human occupancy. ASHRAE.
  • ASTM International. (2015). Standard test method for measuring humidity with a psychrometer (E337–15). ASTM International.
  • Azuma, K., Kagi, N., Yanagi, U., Kim, H., & Osawa, H. (2022). A longitudinal study on the effects of hygro-thermal conditions and indoor air pollutants on building-related symptoms in office buildings. Indoor Air, 32, e13164. https:// doi.org/10.1111/ina.13164
  • Barnett, H. L., & Hunter, B. B. (1999). Illustrated genera of imperfect fungi (4th ed.). The American Phytopathological Society.
  • Bluyssen, P., de Oliveira Fernandes, E., Fanger, P. O., Groes, L., Clausen, G., Roulet, C. A., Bernhard, C. A., & Valbjørn, Ø. (2005). European audit project to optimise indoor air quality and energy consumption in office buildings. TNO Report. https://www.researchgate.net/publication/37460762
  • Breza–Boruta, B., & Paluszak, Z. (2007). Influence of water treatment plant on microbiological composition of air bioaerosols. Polish Journal of Environmental Studies, 16(5), 663–670.
  • Buljat, A., Čargonja, M., & Mekterović, D. (2024). Source apportionment of particulate matter in a metal workshop. International Journal of Environmental Research and Public Health, 21(6), 768. https://doi.org/10.3390/ijerph21060768
  • Camuffo, D. (2019). Microclimate for cultural heritage: Measurement, risk assessment, conservation, restoration, and maintenance of indoor and outdoor monuments (2nd ed.). Elsevier.
  • California Office of Environmental Health Hazard Assessment. (1999). Ammonia, Appendix D.2: Chronic RELs and toxicity summaries. https://oehha.ca.gov/ media/downloads/crnr/appendixd2final.pdf
  • Commission of the European Communities. (1993). Report No. 12: Biological particles in indoor environments. Luxembourg.
  • Chai, G., He, H., Sha, Y., Zhai, G., & Zong, S. (2019). Effect of PM2.5 on daily outpatient visits for respiratory diseases in Lanzhou, China. Science of The Total Environment, 649, 1563–1572. https://doi.org/10.1016/j.scitotenv.2018.08.384
  • Chawla, H., Anand, P., Garg, K., Bhagat, N., Varmani, S. G., Bansal, T., McBain, A. J., & Marwah, R. G. (2023). A comprehensive review of microbial contamination in the indoor environment: Sources, sampling, health risks, and mitigation strategies. Frontiers in Public Health, 11. https://doi.org/10.3389/ fpubh.2023.1285393
  • Cheng, Y.-H. (2017). Measuring indoor particulate matter concentrations and size distributions at different time periods to identify potential sources in an office building in Taipei City. Building and Environment, 123, 446–457. https://doi. org/10.1016/j.buildenv.2017.07.025
  • Cho, E. M., Hong, H. J., Park, S. H., Yoon, D. K., Goung, S. J. N., & Lee, C. M. (2019). Distribution and influencing factors of airborne bacteria in public facilities used by pollution-sensitive population: A meta-analysis. International Journal of Environmental Research and Public Health, 16, 1483. https://doi. org/10.3390/ijerph16091483
  • Cox, C. S. (1998). The microbiology of air. In L. Collier, A. Balows, & M. Sussman (Eds.), Topley & Wilson’s microbiology and microbial infections (9th ed., pp. 339–350). Arnold, Oxford University Press.
  • Crawford, J. A., Rosenbaum, P. F., Anagnost, S. E., Hunt, A., & Abraham, J. L. (2015). Indicators of airborne fungal concentrations in urban homes: Understanding the conditions that affect indoor fungal exposures. Science of The Total Environment, 517, 113–124. https://doi.org/10.1016/j.scitotenv.2015.02.060
  • Dacarro, C., Grisoli, P., Del, F. G., Villani, S., Grignani, E., & Cotta, D. (2005). Microorganisms and dust exposure in an Italian grain-mill. Journal of Applied Microbiology, 98(1), 163–171. https://doi.org/10.1111/j.1365-2672.2004.02437.x
  • Dehghani, M. H., Bashardoust, P., Zirrahi, F., Ajami, B., Ghalhari, M. R., & others. (2024). Environmental and health effects due to volatile organic compounds. In M. H. Dehghani, R. R. Karri, T. Vera, & S. K. M. Hassan (Eds.), Health effects of indoor air pollution (pp. 191–221). Academic Press. https://doi. org/10.1016/B978-0-443-16090-5.00003-9
  • Dennis, P. J., & Lee, J. V. (1988). Differences in aerosol survival between pathogenic and non-pathogenic strains of Legionella pneumophila serogroup 1. Journal of Applied Bacteriology, 65, 135–141. https://doi.org/10.1111/j.1365-2672.1988. tb01501.x
  • DiBernardino, A., Iannarelli, A. M., Casadio, S., Perrino, C., Barnaba, F., Tofful, L., & others. (2021). Impact of synoptic meteorological conditions on air quality in three different case studies in Rome, Italy. Atmospheric Pollution Research, 12(4), 76–88. https://doi.org/10.1016/j.apr.2021.02.019
  • DiCarlo, E., Chisesi, R., Barresi, G., Barbaro, S., Lombardo, G., Rotolo, V., Sebastianelli, M., Travagliato, G., & Palla, F. (2016). Fungi and bacteria in indoor cultural heritage environments: Microbial-related risks for artworks and human health. Environment and Ecology Research, 4(5), 257–264. https://doi. org/10.13189/eer.2016.040504
  • Donaldson, A. I., & Ferris, N. P. (1975). Survival of foot-and-mouth disease virus in open air conditions. The Journal of Hygiene, 74(3), 409–416. https://doi. org/10.1017/s002217240004691x
  • Dong, T., Zhang, Y., Jia, S., Shang, H., Fang, W., Chen, D., & Fang, M. (2019). Human indoor exposome of chemicals in dust and risk prioritization using EPA’s ToxCast database. Environmental Science & Technology, 53(12), 7045–7054. https://doi.org/10.1021/acs.est.9b00280
  • Dylag, M. (2017). Fungi present in home and their impact on human health-A short review. Insights in Biology and Medicine, 1(1), 016 -025. https://doi. org/10.29328/journal.hjbm.1001003
  • Egyptian Environmental Affairs Agency (EEAA). (1994). Law No. 4/1994 Promulgating the Environment Law and its Executive Regulation. Presidential Decree (4), 130. http://extwprlegs1.fao.org/docs/pdf/egy4984E.pdf
  • Ellis, M. B. (1971). Dematiaceous hyphomycetes (p. 608). The Western Press Ltd.
  • Erkara, I. P., Asan, A., Yilmaz, V., Pehlivan, S., & Okten, S. S. (2008). Airborne Alternaria and Cladosporium species and relationship with meteorological conditions in Eskisehir City, Turkey. Environmental Monitoring and Assessment, 144, 31–41. https://doi.org/10.1007/s10661-007-9939-0
  • Fang, L., Liu, N., Liu, W., Mo, J., Zhao, Z., Kan, H., Deng, F., Huang, C., Zhao, B., & others. (2022). Indoor formaldehyde levels in residences, schools, and offices in China in the past 30 years: A systematic review. Indoor Air, 32(10), e13141. https://doi.org/10.1111/ina.13141
  • Felgueiras, F., Mourão, Z., Moreira, A., & Fonseca-Gabriel, M. (2023). Indoor environmental quality in offices and risk of health and productivity complaints at work: A literature review. Journal of Hazardous Materials Advances, 10, 100314. https://doi.org/10.1016/j.hazadv.2023.100314
  • Frohlich-Nowoisky, J., Nespoli, C. R., Pickersgill, D. A., Galand, P. E., Muller- Germann, I., Nunes, T., Cardoso, J. G., Almeida, S. M., Pio, C., & others. (2014). Diversity and seasonal dynamics of airborne archaea. Biogeosciences, 11, 6067– 6079. https://doi.org/10.5194/bg-11-6067-2014
  • GB/T 18883. (2002). Indoor air quality standard. National Standard of China. https://www.chinesestandard.net/PDF.aspx/GBT18883-2002
  • Gilbert, Y., & Duchaine, C. (2009). Bioaerosols in industrial environments: A review. Canadian Journal of Civil Engineering, 36(12), 1873–1886. https://doi. org/10.1139/L09-117
  • Grisoli, P., Albertoni, M., & Rodolfi, M. (2019). Application of airborne microorganism indexes in offices, gyms, and libraries. Applied Sciences, 9(6), 1101. https://doi.org/10.3390/app9061101
  • Hambleton, P., Broster, M., Dennis, P., Henstridge, R., Fitzgeorge, R., & Conlan, J. (1983). Survival of virulent Legionella pneumophila in aerosols. Journal of Hygiene, 90(3), 451–460. https://doi.org/10.1017/s0022172400029090
  • Hansen, D. L. (1999). Indoor air quality issues. Taylor and Francis.
  • Hatch, M. T., Wright, D. N., & Bailey, G. D. (1970). Response of airborne Mycoplasma pneumoniae to abrupt changes in relative humidity. Applied Microbiology, 19(2), 232–238. https://doi.org/10.1128/am.19.2.232-238.1970
  • Hoekstra, E. S., Samson, R. A., & Verhoeff, A. P. (1994). Fungal propagules in house dust: A qualitative analysis. In Health implications of fungi in indoor environments (pp. 169–177). Elsevier Science B.V.
  • Holmberg, K. (1987). Indoor mould exposure and health effects. In B. Seifen, H. Esdorn, M. Fischer, H. Ruden, & J. Wegner (Eds.), Proceedings of Indoor Air ‘87 (Vol. 1, pp. 637–642). Institute of Water, Soil and Air Hygiene.
  • Holøs, S. B., Yang, A., Lind, M., Thunshelle, K., Schild, P., & Mysen, M. (2018). VOC emission rates in newly built and renovated buildings, and the influence of ventilation – A review and meta-analysis. International Journal of Ventilation, 18(3), 153–166. https://doi.org/10.1080/14733315.2018.1435026
  • Horner, W. E. (2006). Managing building-related Aspergillus exposure. Medical Mycology, 44(1), S33–S38. https://doi.org/10.1080/13693780600925194
  • Health and Safety Executive (HSE). (2018). Workplace exposure limits: EH40/2005 (3rd ed.). HSE Books.
  • Hurst, C. I., Knudsen, G. T., McInerney, M. J., Stetzenbach, L. D., & Walter, M. V. (2007). Manual of environmental microbiology (pp. 661–663). ASM Press.
  • Insley, A. L., Maskrey, J. R., Hallett, L. A., Reid, R. C., Hynds, E. S., Winter, C., & Panko, J. M. (2019). Occupational survey of airborne metal exposures to welders, metalworkers, and bystanders in small fabrication shops. Journal of
  • Occupational and Environmental Hygiene, 16(6), 410–421. https://doi.org/10.10 80/15459624.2019.1603389
  • International Agency for Research on Cancer (IARC). (2006). Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol (IARC monographs on the evaluation of carcinogenic risks to humans, Vol. 88).
  • International Society of Indoor Air Quality and Climate, Scientific and Technical Committee 34. (2025). Indoor environmental quality guidelines database. https:// ieqguidelines.org/
  • Jabeen, R., Kizhisseri, M. I., Mayanaik, S. N., & Mohamed, M. M. (2023). Bioaerosol assessment in indoor and outdoor environments: A case study from India. Scientific Reports, 13, Article 18066. https://doi.org/10.1038/s41598-023- 44315-z
  • Juda-Rezler, K., Reizer, M., Maciejewska, K., Błaszczak, B., & Klejnowski, K. (2020). Characterization of atmospheric PM2.5 sources at a Central European urban background site. Science of The Total Environment, 713, 136729. https:// doi.org/10.1016/j.scitotenv.2020.136729
  • Kadaifciler, D. G. (2017). Bioaerosols assessment in the library of Istanbul University and fungal flora associated with paper deterioration. Aerobiologia, 33(1), 151–166. https://doi.org/10.1007/s10453-016-9457-z
  • Kang, S., Ou, D., & Mak, C. M. (2017). The impact of indoor environmental quality on work productivity in university open-plan research offices. Building and Environment, 124, 78–89. https://doi.org/10.1016/j.buildenv.2017.07.003
  • Karbowska-Berent, J., Górny, R. L., Strzelczyk, A. B., & Wlazło, A. (2011). Airborne and dust borne microorganisms in selected Polish libraries and archives. Building and Environment, 46(10), 1872–1879. https://doi.org/10.1016/j. buildenv.2011.03.007
  • Kim, K.-H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143. https:// doi.org/10.1016/j.envint.2014.10.005
  • Krinsky, N. I. (1976). Cellular damage initiated by visible light. In The survival of vegetative microbes: Symposium of the Society for General Microbiology (Vol. 26, pp. 209–239). [Google Scholar]
  • Krueger, A. P., Kotaka, S., & Andriese, P. C. (1969). Atmospheric ions and aerosols. In R. I. Dimmick & A. B. Akers (Eds.), An introduction to experimental aerobiology (pp. 100–112). Wiley Interscience.
  • Kumar, P., & Imam, B. (2013). Footprints of air pollution and changing environment on the sustainability of built infrastructure. Science of The Total Environment, 444, 85–101. https://doi.org/10.1016/j.scitotenv.2012.11.056
  • Kumar, P., Kausar, A. M., Singh, A. B., & Singh, R. (2021). Biological contaminants in the indoor air environment and their impacts on human health. Air Quality, Atmosphere & Health, 14(11), 1723–1736. https://doi.org/10.1007/ s11869-021-00978-z
  • Lacey, J., & Crook, B. (1988). Fungal and actinomycete spores as pollutants of the workplace and occupational allergens. Annals of Occupational Hygiene, 32, 515–533. https://doi.org/10.1093/annhyg/32.4.515
  • Lacey, J., & Dutkiewicz, J. (1994). Bioaerosols and occupational lung disease. Journal of Aerosol Science, 25(8), 1371–1404. https://doi.org/10.1016/0021- 8502(94)90215-1
  • Lacey, J., Ramakrishna, N., Hamer, A., Magan, N., & Marfleet, I. (1991). Grain fungi. In D. K. Arora, K. G. Mukerji, & E. H. Marth (Eds.), Handbook of Applied Mycology (Vol. 3, pp. 121–177). Marcel Dekker.
  • Lai, A. C. K., & Nazaroff, W. W. (2000). Modeling indoor particle deposition from turbulent flow onto smooth surfaces. Journal of Aerosol Science, 31(4), 463–476. https://doi.org/10.1016/S0021-8502(99)00536-4
  • Lan, L., Wargocki, D. P., Wyon, D. P., & Lian, Z. (2011). Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance. Indoor Air, 21(5), 376–390. https://doi. org/10.1111/j.1600-0668.2011.00714.x
  • Langer, S., & Bekö, G. (2013). Indoor air quality in the Swedish housing stock and its dependence on building characteristics. Building and Environment, 69, 44–54. https://doi.org/10.1016/j.buildenv.2013.07.013
  • Lefferts, M. J., & Castell, M. R. (2022). Ammonia breath analysis. Sensors and Diagnostics, 1, 955–967. https://doi.org/10.1039/D2SD00089J
  • Levetin, E., & Dorsey, K. (2006). Contribution of leaf surface fungi to the air spora. Aerobiologia, 22, 3–12. https://doi.org/10.1007/s10453-005-9012-9
  • Li, M., Weschler, C. J., Bekö, G., Wargocki, P., Lucic, G., & Williams, J. (2020). Human ammonia emission rates under various indoor environmental conditions. Environmental Science & Technology, 54(9), 5419–5428. https://doi.org/10.1021/ acs.est.0c00094
  • Li, J., Xu, W., You, B., & Sun, Y. (2022). Dynamic variations of ammonia in various life spaces and seasons and the influences of human activities. Building and Environment, 212, 108820. https://doi.org/10.1016/j.buildenv.2022.108820
  • Lighthart, B., & Shaffer, B. T. (1997). Increased airborne bacterial survival as a function of particle content and size. Aerosol Science and Technology, 27, 439– 446. https://doi.org/10.1080/02786829708965483
  • Lippai, A., Leelőssy, Á., & Magyar, D. (2024). Indoor and outdoor air microbial contamination during different reconstruction methods of historic buildings. Pathogens, 13(12), 1048. https://doi.org/10.3390/pathogens13121048
  • Liu, T., Lin, Y., Chen, J., Chen, G., Yang, C., Xu, L., Li, M., Fan, X., Zhang, F., & Hong, Y. (2023). Pollution mechanisms and photochemical effects of atmospheric HCHO in a coastal city of southeast China. Science of The Total Environment, 859(Part 1), 160210. https://doi.org/10.1016/j.scitotenv.2022.160210
  • Loukou, E., Jensen, N. F., Rohde, L., & Andersen, B. (2024). Damp buildings: Associated fungi and how to find them. Journal of Fungi, 10(2), 108. https://doi. org/10.3390/jof10020108
  • Macher, J. M., et al. (1995). Sampling airborne microorganisms and aeroallergens. In B. S. Cohen & S. V. Hering (Eds.), Air sampling instruments for evaluation of atmospheric contaminants (8th ed., pp. 589–617). ACGIH.
  • MacIntosh, D. L., Brightman, H. S., Baker, B. J., Myatt, T. A., Stewart, J. H., & McCarthy, J. F. (2006). Airborne fungal spores in a cross-sectional study of office buildings. Journal of Occupational and Environmental Hygiene, 3(7), 379–389. https://doi.org/10.1080/10543400600760438
  • Mackiewicz, B., Skórska, C., & Dutkiewicz, J. (2015). Relationship between concentrations of microbiological agents in the air of agricultural settings and occurrence of work-related symptoms in exposed persons. Annals of Agricultural and Environmental Medicine, 22(3), 473–477. https://doi. org/10.5604/12321966.1167717
  • Mangotra, A., & Singh, S. K. (2024). Volatile organic compounds: A threat to the environment and health hazards to living organisms – A review. Journal of Biotechnology, 382, 51–69. https://doi.org/10.1016/j.jbiotec.2023.12.013
  • Matthias-Maser, S. (1998). Primary biological aerosol particles: Their significance, sources, sampling methods, and size distribution in the atmosphere. In R. M. Harrison & R. E. Van Grieken (Eds.), Environmental particles (pp. 349–369). Wiley.
  • Melymuk, L., Demirtepe, H., & Rozárka Jílková, S. (2020). Indoor dust and associated chemical exposures. Current Opinion in Environmental Science & Health, 15, 1–6. https://doi.org/10.1016/j.coesh.2020.01.005
  • Mendell, M. J., Naco, G. M., Wilcox, T. G., & Sieber, W. K. (2003). Environmental risk factors and work-related lower respiratory symptoms in 80 office buildings: An exploratory analysis of NIOSH data. American Journal of Industrial Medicine, 43(6), 630–641. https://doi.org/10.1002/ajim.10211
  • Miller, J. D., Laflamme, A. M., Sobol, Y., Lafontaine, P., & Greenhalgh, R. (1988). Fungi and fungal products in some Canadian houses. International Biodeterioration, 24(2), 103–120. https://doi.org/10.1016/0265- 3036(88)90053-X
  • Missia, D., Demetriou, E., Michael, N., Tolis, E. I., & Bartzis, J. G. (2010). Indoor exposure from building materials: A field study. Atmospheric Environment, 44(35), 4388–4395. https://doi.org/10.1016/j.atmosenv.2010.07.049
  • Morawska, L., & Salthammer, T. (2003). Fundamentals of indoor particles and settled dust. In L. Morawska & T. Salthammer (Eds.), Indoor environment (pp. 1–36). Wiley-VCH.
  • Mousavi, B., Hedayati, M. T., Hedayati, N., Ilkit, M., & Syedmousavi, S. (2016). Aspergillus species in indoor environments and their possible occupational and public health hazards. Current Medical Mycology, 2(1), 36–42. https://doi. org/10.18869/acadpub.cmm.2.1.36
  • Murdoch, L. E., McKenzie, K., Maclean, M., MacGregor, S. J., & Anderson, J. G. (2013). Lethal effects of high-intensity violet 405-nm light on Saccharomyces cerevisiae, Candida albicans, and on dormant and germinating spores of Aspergillus niger. Fungal Biology, 117(7), 519–527. https://doi.org/10.1016/j. funbio.2013.05.004
  • Nath, A., Baruah, N., Nonglait, M. L., et al. (2023). Biological contaminants in indoor environments of educational institutions. Aerobiologia, 39, 1–20. https:// doi.org/10.1007/s10453-022-09771-6
  • Nazaroff, W. W., & Weschler, C. J. (2004). Cleaning products and air fresheners; Exposure to primary and secondary air pollutants. Atmospheric Environment, 38(18), 2841–2865. https://doi.org/10.1016/j.atmosenv.2004.02.040
  • Nevalainen, A., Pasanen, A.-L., Niininen, M., Reponen, T., Jantunen, M. J., & Kalliokoski, P. (1991). The indoor air quality in Finnish homes with mold problems. Environment International, 17, 299–302. https://doi.org/10.1016/0160- 4120(91)90015-I
  • Nevalainen, A., Heinonen-Tanski, H., & Savolainen, R. (1990). Indoor and outdoor occurrence of Pseudomonas bacteria. In Indoor Air ’90: Proceedings of the Fifth International Conference on Indoor Air Quality and Climate (Vol. 2, pp. 51–53). Canada Mortgage and Housing Corporation.
  • National Institute for Occupational Safety and Health. (1998). NIOSH method 0800: NIOSH manual of analytical methods.
  • Norbäck, D. (2009). An update on sick building syndrome. Current Opinion in Allergy and Clinical Immunology, 9(1), 55–59. https://doi.org/10.1097/ ACI.0b013e32831f8f08
  • NP 061. (2002). Normativ pentru proiectarea şi executarea sistemelor de iluminat artificial din clădiri.
  • Nurmatov, U. B., Tagiyeva, N., Semple, S., Devereux, G., & Sheikh, A. (2015). Volatile organic compounds and risk of asthma and allergy: A systematic review. European Respiratory Review, 24(135), 92–101. https://doi. org/10.1183/09059180.00000714
  • Ohgke, H., Geers, A., & Beckert, J. (1987). Fungal load of indoor air in historical and newly constructed buildings used by public services. In Proceedings of the 4th International Conference on Indoor Air Quality and Climate (Vol. 1, pp. 681–684).
  • Occupational Safety and Health Administration (OSHA). (n.d.). Reiteration of existing OSHA policy on indoor air quality: Office temperature/humidity and environmental tobacco smoke. https://www.osha.gov (Accessed February 24, 2025)
  • Occupational Safety and Health Administration. (1992). Technical manual. U.S. Department of Labor.
  • Osman, M. E., Abdel Hameed, A. A., Ibrahim, H. Y., Yousef, F., Abo Elnasr, A. A., & Saeed, Y. (2017). Air microbial contamination and factors affecting its occurrence in certain book libraries in Egypt. Egyptian Journal of Botany, 57(1), 93–118. https://doi.org/10.21608/ejbo.2016.277.1007
  • Pacharra, M., Kleinbeck, S., Schäper, M., et al. (2016). Multidimensional assessment of self-reported chemical intolerance and its impact on chemosensory effects during ammonia exposure. International Archives of Occupational and Environmental Health, 89, 947–959. https://doi.org/10.1007/s00420-016-1134-6
  • Park, M., Joo, H. S., Lee, K., Jang, M., Kim, S. D., Kim, I., Borlaza, L. J. S., Lim, H., Shin, H., Chung, K. H., Choi, Y. H., Park, S. G., Bae, M. S., Lee, J., Song, H., & Park, K. (2018). Differential toxicities of fine particulate matters from various sources. Scientific Reports, 8(1), 17007. https://doi.org/10.1038/ s41598-018-35398-0
  • Pepper, I. L., & Gerba, C. P. (2015). Aeromicrobiology. In Environmental microbiology (pp. 89–110). https://doi.org/10.1016/B978-0-12-394626-3.00005- 3
  • Pitt, I. J., & Hocking, A. (2009). Fungi and food spoilage. Springer. https://doi. org/10.1007/978-0-387-92207-2
  • Platt, S. D., Martin, C. J., Hunt, S. M., & Lewis, C. W. (1989). Damp housing, mould growth and symptomatic health state. British Medical Journal, 298, 1673– 1678. https://doi.org/10.1136/bmj.298.6689.1673
  • Polish Standards. (1989). PN-89/Z-04111/03 Protection of air cleanness – Enumeration of microscopic fungi in atmospheric air (in Polish).
  • Pyrri, I., Zoma, A., Barmparesos, N., Assimakopoulos, M. N., Assimakopoulos, V. D., & Kapsanaki-Gotsi, E. (2020). Impact of a green roof system on indoor fungal aerosol in a primary school in Greece. Science of The Total Environment, 719, 137447. https://doi.org/10.1016/j.scitotenv.2020.137447
  • Quintana, Á. R., Seseña, S., Garzón, A., & Arias, R. (2020). Factors affecting levels of airborne bacteria in dairy farms: A review. Animals, 10(3), 526. https:// doi.org/10.3390/ani10030526
  • Quintanilla-Martinez, A., Aguirre-Gutron, L., Espinosa-Chaurand, L., Diaz- Ramirez, M., & Cortes-Sánchez, A. (2022). Microbiological analysis of the air in a popular fish processing and marketing area. Applied Biosciences, 1(3), 299– 314. https://doi.org/10.3390/applbiosci1030019
  • Rai, S., Singh, D. K., & Kumar, A. (2021). Microbial, environmental and anthropogenic factors influencing the indoor microbiome of the built environment. Journal of Basic Microbiology, 61(4), 265–361. https://doi.org/10.1002/ jobm.202000575
  • Raper, K. B., & Fennell, D. I. (1977). The genus Aspergillus. R. E. Krieger Publishing Company.
  • Reponen, T. A., Gazenko, S. V., Grinshpun, S. A., Willeke, K., & Cole, E. C. (1998). Characteristics of airborne actinomycete spores. Applied and Environmental Microbiology, 64(10), 3807–3812. https://doi.org/10.1128/ AEM.64.10.3807-3812.1998
  • Reynolds, S. J., Streifel, A. J., & McJilton, C. E. (1990). Elevated airborne concentrations of fungi in residential and office environments. American Industrial Hygiene Association Journal, 51(11), 601–604. https://doi. org/10.1080/15298669091370185
  • Rintala, H. (2011). Actinobacteria in indoor environments: Exposures and respiratory health effects. Frontiers in Bioscience-Scholar, 3(1), 1273–1284. https://doi.org/10.2741/225
  • Rodriguez-Rajo, F. J., Iglesias, I., & Jato, V. (2005). Variation assessment of airborne Alternaria and Cladosporium spores at different bioclimatical conditions. Mycological Research, 109(Pt. 4), 497–507. https://doi.org/10.1017/ S0953756204001777
  • Romano, S. (2023). Bioaerosols: Composition, meteorological impact and transport. Atmosphere, 14(3), 590. https://doi.org/10.3390/atmos14030590
  • Roshan, S. K., Godini, H., Nikmanesh, B., Bakhshi, H., & Charsizadeh, A. (2019). Study on the relationship between the concentration and type of fungal bioaerosols at indoor and outdoor air in the children’s medical center, Tehran, Iran. Environmental Monitoring and Assessment, 191(2), 48. https://doi.org/10.1007/ s10661-018-7183-4
  • Roumi, S., Zhang, F., Stewart, R. A., & Santamouris, M. (2022). Commercial building indoor environmental quality models: A critical review. Energy and Buildings, 263(3), 112033. https://doi.org/10.1016/j.enbuild.2022.112033
  • Sabariego, S., Díaz de la Guardia, C., & Alba, F. (2000). The effect of meteorological factors on the daily variation of air-borne fungal spores in Granada (southern Spain). International Journal of Biometeorology, 44, 1–5. https://doi. org/10.1007/s004840050131
  • Salthammer, T., Mentese, S., & Marutzky, R. (2010). Formaldehyde in the indoor environment. Chemical Reviews, 110(4), 2536–2572. https://doi.org/10.1021/ cr800399g
  • Schäffer, J., Trautman, C., Dill, I., Fischer, G., et al. (2009). Actinomycetes in indoor environments. Gefahrstoffe Reinhaltung der Luft, 69(9), 335–341.
  • Shiferaw, T., Gebre-Silasse, L., Mulisa, G., Zewidu, A., Belachew, F., Muleta, D., & Zemene, E. (2016). Bacterial indoor-air load and its implications for healthcare-acquired infections in a teaching hospital in Ethiopia. International Journal of Infection Control, 12(1). https://doi.org/10.3396/ijic.v12i1.15808
  • Sillanpää, M., Saarikoski, S., Hillamo, R., Pennanen, A., Makkonen, U., Spolnik, Z., Van Grieken, R., Koskentalo, T., & Salonen, R. O. (2005). Chemical composition, mass size distribution and source analysis of long-range transported wildfire smokes in Helsinki. Science of The Total Environment, 350(1–3), 119– 135. https://doi.org/10.1016/j.scitotenv.2005.01.024
  • Smets, W., Moretti, S., Denys, S., & Lebeer, S. (2016). Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmospheric Environment, 139, 214–221. https://doi.org/10.1016/j.atmosenv.2016.05.038
  • Soleimani, M., Shiran, F., Amir, S., & Jalali, H. (2022). Spatial and temporal variation of bacterial population in ambient air particulate matters (PM2.5, PM10 and TSP) of Isfahan city, Iran. Journal of Air Pollution and Health, 7(3), 261– 274. https://doi.org/10.18502/japh.v7i3.10540
  • Spinazzè, A., Campagnolo, D., Cattaneo, A., Urso, P., Sakellaris, I. A., Saraga, D. E., Mandin, C., et al. (2020). Indoor gaseous air pollutants determinants in office buildings – The OFFICAIR project. Indoor Air, 30, 76–87. https://doi. org/10.1111/ina.12609
  • Sulaiman, M. A., Wan Yusoff, W. Z., & Wan Kamarudin, W. N. (2013). Evaluation of indoor environmental quality (IEQ) on dense academia Universiti Tun Hussein Onn Malaysia. International Journal of Scientific and Research Publications, 3(1), 1–5. https://www.ijsrp.org/research-paper-1301.php?rp=P13622
  • Sun, C., Cai, Y., Chen, J., Li, J., Su, C., Zou, Z., & Huang, C. (2024). Indoor ammonia concentrations in college dormitories and the health effects. Journal of Building Engineering, 84, 108556. https://doi.org/10.1016/j.jobe.2024.108556
  • Sun, C., Hong, S., Cai, G., Zhang, Y., Kan, H., Zhao, Z., Deng, F., Zhao, B., Zeng, X., Sun, Y., Qian, H., Liu, W., Mo, J., Guo, J., Zheng, X., Su, C., Zou, Z., Li, H., & Huang, C. (2021). Indoor exposure levels of ammonia in residences, schools, and offices in China from 1980 to 2019: A systematic review. Indoor Air, 31(6), 1691–1706. https://doi.org/10.1111/ina.12864
  • Tang, J. W. (2009). The effect of environmental parameters on the survival of airborne infectious agents. Journal of the Royal Society Interface, 6(6), S737– S746. https://doi.org/10.1098/rsif.2009.0227.focus
  • Tang, H., Ding, Y., & Singer, B. (2020). Interactions and comprehensive effect of indoor environmental quality factors on occupant satisfaction. Building and Environment, 167, 106462. https://doi.org/10.1016/j.buildenv.2019.106462
  • Tiwari, A., Pandey, M., Tirkey, A., Tiwari, A., Dubey, R., & Pandey, S. K. (2024). Image-based analytical approaches for study of particulate matter (PM) in air. Frontiers in Environmental Science, 12, 1362422. https://doi.org/10.3389/ fenvs.2024.1362422
  • Thorne, P. S. (2019). Industrial livestock production facilities: Airborne emissions. In J. Nriagu (Ed.), Encyclopedia of Environmental Health (2nd ed., pp. 652–660). https://doi.org/10.1016/B978-0-12-409548-9.11862-7
  • Tran, V. V., Park, D., & Lee, Y. C. (2020). Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air. International Journal of Environmental Research and Public Health, 17(8), 2927. https://doi.org/10.3390/ijerph17082927
  • Tuomi, T., & Vainiotalo, S. (2016). The guideline and target values for total volatile organic compound concentrations in industrial indoor environments in Finland. Indoor and Built Environment, 25(2), 424–434. https://doi. org/10.1177/1420326X14554270
  • Tyagi, S., & Srivastava, A. (2023). Characterization of size-segregated fungal bioaerosols in and around a sugar mill of Western Uttar Pradesh, India. Research Square. https://doi.org/10.21203/rs.3.rs-2407544/v1
  • U.S. Environmental Protection Agency (U.S. EPA). (2025a). Indoor air quality (IAQ). https://www.epa.gov/indoor-air-quality-iaq (Accessed January 2025)
  • U.S. Environmental Protection Agency (U.S. EPA). (2025b). Biological pollutants’ impact on indoor air quality. https://www.epa.gov/indoor-air-quality-iaq/biological-pollutants-impact-indoor-air-quality (Accessed January 2025)
  • Verreault, D., Duchaine, C., Marcoux-Voiselle, M., Turgeon, N., & Roy, C. J. (2014). Design of an environmentally controlled rotating chamber for bioaerosol aging studies. Inhalation Toxicology, 26(9), 554–558. https://doi.org/10.3109/0 8958378.2014.928763
  • Wilkie, A. D., Venz, L., & Letters, S. (2023). Outdoor airborne fungal spores in Queensland, Australia. Journal of Bacteriology & Mycology: Open Access, 11(1), 24–32. https://doi.org/10.15406/jbmoa.2023.11.00339
  • World Health Organization. (2000). Air quality guidelines for Europe (2nd ed.). WHO Regional Publications, European Series No. 91.
  • World Health Organization. (2001). International classification of functioning, disability and health (pp. 1–303). World Health Organization.
  • World Health Organization. (2010). Guidelines for indoor air quality: Selected pollutants. Geneva: WHO.
  • Wolkoff, P. (2008). “Healthy eye” in office-like environments. Environment International, 34(8), 1204–1214. https://doi.org/10.1016/j.envint.2008.04.005
  • Won, E., & Ross, H. (1969). Reaction of airborne Rhizobium meliloti to some environmental factors. Applied Microbiology, 18, 555–557. https://doi. org/10.1128/am.18.4.555-557.1969
  • Wu, Q., Li, N., Cai, X., He, Y., & Du, Y. (2023). Impact of indoor environmental quality (IEQ) factors on occupants’ environmental perception and satisfaction in hospital wards. Building and Environment, 245, 110918. https://doi. org/10.1016/j.buildenv.2023.110918
  • Wyer, E. K., Kelleghan, B. D., Blanes-Vidal, V., Schauberger, G., & Curran, P. T. (2022). Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. Journal of Environmental Management, 323, 116285. https://doi.org/10.1016/j. jenvman.2022.116285
  • Zhang, H., Sun, W., Li, W., & Wang, Y. (2022). Physical and chemical characterization of fugitive particulate matter emissions of the iron and steel industry. Atmospheric Pollution Research, 13(1), 101272. https://doi. org/10.1016/j.apr.2021.101272
  • Zhong, X., Qi, J. H., Li, H. T., Dong, L. J., & Gao, D. M. (2016). Seasonal distribution of microbial activity in bioaerosols in the outdoor environment of the Qingdao coastal region. Atmospheric Environment, 140(Suppl. 1), 506–513. https://doi.org/10.1016/j.atmosenv.2016.06.034
  • Zhu, Y., Guo, S., & Liang, W. (2024). A literature review investigating the impact of temperature and humidity on volatile organic compound emissions from building materials. Building and Environment, 262, 111845. https://doi. org/10.1016/j.buildenv.2024.111845
Toplam 155 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevresel Değerlendirme ve İzleme
Bölüm Araştırma Makalesi/Research Article
Yazarlar

Abdel Hameed A. Awad 0000-0003-0784-9835

Safa El Gendy 0000-0003-1100-5985

Yuosra Saeed 0000-0002-5183-4342

Salwa Kamal 0000-0001-8087-1268

Proje Numarası grant number 12070103
Erken Görünüm Tarihi 19 Ağustos 2025
Yayımlanma Tarihi
Gönderilme Tarihi 1 Mart 2025
Kabul Tarihi 16 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Sayı: Online First

Kaynak Göster

APA Awad, A. H. A., El Gendy, S., Saeed, Y., Kamal, S. (2025). Indoor air quality of academia-related workshops based on health complaints. Trakya University Journal of Natural Sciences(Online First).
AMA Awad AHA, El Gendy S, Saeed Y, Kamal S. Indoor air quality of academia-related workshops based on health complaints. Trakya Univ J Nat Sci. Ağustos 2025;(Online First).
Chicago Awad, Abdel Hameed A., Safa El Gendy, Yuosra Saeed, ve Salwa Kamal. “Indoor Air Quality of Academia-Related Workshops Based on Health Complaints”. Trakya University Journal of Natural Sciences, sy. Online First (Ağustos 2025).
EndNote Awad AHA, El Gendy S, Saeed Y, Kamal S (01 Ağustos 2025) Indoor air quality of academia-related workshops based on health complaints. Trakya University Journal of Natural Sciences Online First
IEEE A. H. A. Awad, S. El Gendy, Y. Saeed, ve S. Kamal, “Indoor air quality of academia-related workshops based on health complaints”, Trakya Univ J Nat Sci, sy. Online First, Ağustos 2025.
ISNAD Awad, Abdel Hameed A. vd. “Indoor Air Quality of Academia-Related Workshops Based on Health Complaints”. Trakya University Journal of Natural Sciences Online First (Ağustos 2025).
JAMA Awad AHA, El Gendy S, Saeed Y, Kamal S. Indoor air quality of academia-related workshops based on health complaints. Trakya Univ J Nat Sci. 2025.
MLA Awad, Abdel Hameed A. vd. “Indoor Air Quality of Academia-Related Workshops Based on Health Complaints”. Trakya University Journal of Natural Sciences, sy. Online First, 2025.
Vancouver Awad AHA, El Gendy S, Saeed Y, Kamal S. Indoor air quality of academia-related workshops based on health complaints. Trakya Univ J Nat Sci. 2025(Online First).

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.