Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis and Characterization of Activated Carbon and Carbon Molecular Sieves from Lentil Stalks for Methylene Blue Adsorption

Yıl 2025, Cilt: 6 Sayı: 1, 20 - 32, 30.04.2025
https://doi.org/10.70562/tubid.1647470

Öz

In this study, activated carbon was synthesized using hydrochar obtained from lentil stalks, which is generally evaluated as animal feed, by hydrothermal method. Thus, a low value-added biomass source was transformed into a higher value-added product. Activated carbon was synthesized using ZnCl₂ activator by chemical activation method and then carbon molecular sieve was obtained by chemical vapor deposition method. Characterization of synthesized activated carbon and carbon molecular sieves was carried out using FTIR, BET and SEM analysis techniques. SEM analysis results showed that synthesized activated carbon had a more porous structure compared to hydrochar and raw lentil stalk. Synthesized activated carbon and carbon molecular sieve were used in methylene blue adsorption for the removal of organic pollutants. In this process, parameters such as pH and initial concentration affecting adsorption performance were investigated and adsorption kinetics were determined. Methylene blue adsorption equilibrium data were applied to Langmuir and Freundlich isotherms and it was determined that the system showed the best fit to Langmuir isotherm. The maximum adsorption capacity (qmax) was determined as 98 mg/g for activated carbon and 87 mg/g for carbon molecular sieve. In addition, it was concluded that the methylene blue adsorption kinetics for both adsorbents fit the pseudo-second-order kinetic model. This study reveals that agricultural wastes such as lentil stalks can be effectively used in reducing environmental pollution by converting them into high-performance adsorbent materials.

Proje Numarası

2021-SİÜMÜH-11

Teşekkür

This research was supported by grants from Research Projects Unit of Siirt University (2021-SİÜMÜH-11).

Kaynakça

  • 1. Horoz S, Baytar O, Sahin O, Kilicvuran H. Photocatalytic degradation of methylene blue with Co alloyed CdZnS nanoparticles. Journal of Materials Science: Materials in Electronics. 2018;29:1004-10.
  • 2. Baytar O, Sahin O, Kilicvuran H, Horoz S. Synthesis, structural, optical and photocatalytic properties of Fe-alloyed CdZnS nanoparticles. Journal of Materials Science: Materials in Electronics. 2018;29:4564-8.
  • 3. Mundt JM, Rouse L, Van den Bossche J, Goodrich RP. Chemical and biological mechanisms of pathogen reduction technologies. Photochemistry and photobiology. 2014;90(5):957-64.
  • 4. Şahin Ö, Saka C, Ceyhan AA, Baytar O. The pyrolysis process of biomass by two-stage chemical activation with different methodology and iodine adsorption. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2016;38(12):1756-62.
  • 5. Kutluay S, Baytar O, Şahin Ö. Adsorption kinetics, equilibrium and thermodynamics of gas-phase toluene onto char produced from almond shells. Res Eng Struct Mater. 2019;5:279-98.
  • 6. Cao Y, Yang L, Liu F, Yu Q. Adsorption experiments and mechanisms of methylene blue on activated carbon from garden waste via deep eutectic solvents coupling KOH activation. Biomass and Bioenergy. 2024;182:107074.
  • 7. Sharma M, Sharma S, Alkhanjaf AAM, Arora NK, Saxena B, Umar A, et al. Microbial fuel cells for azo dye degradation: A perspective review. Journal of Industrial and Engineering Chemistry. 2024.
  • 8. Bulut N, Baytar O, Şahin Ö, Horoz S. Synthesis of Co-doped NiO/AC photocatalysts and their use in photocatalytic degradation. Journal of the Australian Ceramic Society. 2021;57:419-25.
  • 9. Yildiz H, Gülşen H, Şahin Ö, Baytar O, Kutluay S. Novel adsorbent for malachite green from okra stalks waste: synthesis, kinetics and equilibrium studies. International Journal of Phytoremediation. 2024;26(3):369-81.
  • 10. Amran F, Sarawanan T, Qi YK, Azmi A, Arsad A, Zaini MAA. Coconut shell carbon via phosphoric acid activation for rhodamine B, malachite green, and methylene blue adsorption–equilibrium and kinetics. International Journal of Phytoremediation. 2025;27(1):36-45.
  • 11. Faggiano A, Ricciardi M, Motta O, Fiorentino A, Proto A. Comparative study of greywater treatment using activated carbon and woodchip biochar for surfactant and organic matter removal. Separation and Purification Technology. 2025;356:129861.
  • 12. Teğin ŞÖ, Şahin Ö, Baytar O, İzgi MS. Preparation and characterization of activated carbon from almond shell by microwave-assisted using ZnCl2 activator. International Journal of Chemistry and Technology. 2020;4(2):130-7.

Metilen Mavisi Adsorpsiyonu için Mercimek Saplarından Aktif Karbon ve Karbon Moleküler Eleklerin Sentezi ve Karakterizasyonu

Yıl 2025, Cilt: 6 Sayı: 1, 20 - 32, 30.04.2025
https://doi.org/10.70562/tubid.1647470

Öz

Bu çalışmada, genellikle hayvan yemi olarak değerlendirilen mercimek saplarından elde edilen hidrokömür kullanılarak hidrotermal yöntemle aktif karbon sentezlenmiştir. Böylece düşük katma değerli bir biyokütle kaynağı daha yüksek katma değerli bir ürüne dönüştürülmüştür. Aktif karbon, kimyasal aktivasyon yöntemi ile ZnCl₂ aktivatörü kullanılarak sentezlenmiş, ardından kimyasal buhar biriktirme yöntemi ile karbon moleküler elek elde edilmiştir. Sentezlenen aktif karbon ve karbon moleküler eleklerin karakterizasyonu FTIR, BET ve SEM analiz teknikleri kullanılarak yapılmıştır. SEM analiz sonuçları sentezlenen aktif karbonun hidrokömür ve ham mercimek sapına göre daha gözenekli bir yapıya sahip olduğunu göstermiştir. Sentezlenen aktif karbon ve karbon moleküler elek, organik kirleticilerin giderimi için metilen mavisi adsorpsiyonunda kullanılmıştır. Bu işlemde adsorpsiyon performansını etkileyen pH ve başlangıç konsantrasyonu gibi parametreler incelenmiş ve adsorpsiyon kinetiği belirlenmiştir. Metilen mavisi adsorpsiyon denge verileri Langmuir ve Freundlich izotermlerine uygulandı ve sistemin Langmuir izotermine en iyi uyumu gösterdiği belirlendi. Maksimum adsorpsiyon kapasitesi (qmax) aktif karbon için 98 mg/g ve karbon moleküler elek için 87 mg/g olarak belirlendi. Ayrıca, her iki adsorban için metilen mavisi adsorpsiyon kinetiğinin psödo-ikinci dereceden kinetik modele uyduğu sonucuna varıldı. Bu çalışma, mercimek sapları gibi tarımsal atıkların yüksek performanslı adsorban malzemelere dönüştürülerek çevre kirliliğini azaltmada etkili bir şekilde kullanılabileceğini ortaya koymaktadır.

Proje Numarası

2021-SİÜMÜH-11

Kaynakça

  • 1. Horoz S, Baytar O, Sahin O, Kilicvuran H. Photocatalytic degradation of methylene blue with Co alloyed CdZnS nanoparticles. Journal of Materials Science: Materials in Electronics. 2018;29:1004-10.
  • 2. Baytar O, Sahin O, Kilicvuran H, Horoz S. Synthesis, structural, optical and photocatalytic properties of Fe-alloyed CdZnS nanoparticles. Journal of Materials Science: Materials in Electronics. 2018;29:4564-8.
  • 3. Mundt JM, Rouse L, Van den Bossche J, Goodrich RP. Chemical and biological mechanisms of pathogen reduction technologies. Photochemistry and photobiology. 2014;90(5):957-64.
  • 4. Şahin Ö, Saka C, Ceyhan AA, Baytar O. The pyrolysis process of biomass by two-stage chemical activation with different methodology and iodine adsorption. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2016;38(12):1756-62.
  • 5. Kutluay S, Baytar O, Şahin Ö. Adsorption kinetics, equilibrium and thermodynamics of gas-phase toluene onto char produced from almond shells. Res Eng Struct Mater. 2019;5:279-98.
  • 6. Cao Y, Yang L, Liu F, Yu Q. Adsorption experiments and mechanisms of methylene blue on activated carbon from garden waste via deep eutectic solvents coupling KOH activation. Biomass and Bioenergy. 2024;182:107074.
  • 7. Sharma M, Sharma S, Alkhanjaf AAM, Arora NK, Saxena B, Umar A, et al. Microbial fuel cells for azo dye degradation: A perspective review. Journal of Industrial and Engineering Chemistry. 2024.
  • 8. Bulut N, Baytar O, Şahin Ö, Horoz S. Synthesis of Co-doped NiO/AC photocatalysts and their use in photocatalytic degradation. Journal of the Australian Ceramic Society. 2021;57:419-25.
  • 9. Yildiz H, Gülşen H, Şahin Ö, Baytar O, Kutluay S. Novel adsorbent for malachite green from okra stalks waste: synthesis, kinetics and equilibrium studies. International Journal of Phytoremediation. 2024;26(3):369-81.
  • 10. Amran F, Sarawanan T, Qi YK, Azmi A, Arsad A, Zaini MAA. Coconut shell carbon via phosphoric acid activation for rhodamine B, malachite green, and methylene blue adsorption–equilibrium and kinetics. International Journal of Phytoremediation. 2025;27(1):36-45.
  • 11. Faggiano A, Ricciardi M, Motta O, Fiorentino A, Proto A. Comparative study of greywater treatment using activated carbon and woodchip biochar for surfactant and organic matter removal. Separation and Purification Technology. 2025;356:129861.
  • 12. Teğin ŞÖ, Şahin Ö, Baytar O, İzgi MS. Preparation and characterization of activated carbon from almond shell by microwave-assisted using ZnCl2 activator. International Journal of Chemistry and Technology. 2020;4(2):130-7.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Su Arıtma Süreçleri
Bölüm Araştırma Makalesi
Yazarlar

Halil Demir 0000-0002-9484-6984

Ömer Şahin 0000-0003-4575-3762

Orhan Baytar 0000-0002-2915-202X

Proje Numarası 2021-SİÜMÜH-11
Yayımlanma Tarihi 30 Nisan 2025
Gönderilme Tarihi 27 Şubat 2025
Kabul Tarihi 19 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 1

Kaynak Göster

Vancouver Demir H, Şahin Ö, Baytar O. Synthesis and Characterization of Activated Carbon and Carbon Molecular Sieves from Lentil Stalks for Methylene Blue Adsorption. TUBİD. 2025;6(1):20-32.