Araştırma Makalesi
BibTex RIS Kaynak Göster

Biodiesel Production from Waste Oils with Hazelnut Shell-Based Heterogeneous Catalysts

Yıl 2025, Cilt: 6 Sayı: 1, 33 - 42, 30.04.2025
https://doi.org/10.70562/tubid.1659612

Öz

Most of the world's energy needs come from petrochemicals, coal and natural gas. As the human population increases, energy consumption increases in direct proportion. With the rapid depletion of fossil fuels, alternative energy sources have started to play an important role in energy production. Some of these fuels are wind energy, geothermal energy, solar energy, hydroelectric energy, wave energy, hydrogen energy and biomass energy. One of the biomass energy is biodiesel. Biomass is the energy source with the widest range of applications, especially for developing countries, among renewable energy sources that do not pollute the environment. The aim of this study is to develop different and local biomass-based catalysts for biodiesel production. In this study, hazelnut shell was used as organic waste and converted into heterogeneous catalyst and biodiesel was obtained as a result of transesterification reaction. The quality and conversion of biodiesel were determined by GC-MS analysis. In this study, an environmentally friendly and economical biodiesel production method was developed by converting waste hazelnut shell into activated carbon to obtain catalysts and converting these catalysts into biodiesel by transesterification of waste oils.

Proje Numarası

2021-SİÜMÜH-052

Kaynakça

  • 1. Raj JVA, Bharathiraja B, Vijayakumar B, Arokiyaraj S, Iyyappan J, Kumar RP. Biodiesel production from microalgae Nannochloropsis oculata using heterogeneous Poly Ethylene Glycol (PEG) encapsulated ZnOMn2+ nanocatalyst. Bioresource technology. 2019;282:348-52.
  • 2. Dinesha P, Kumar S, Rosen MA. Combined effects of water emulsion and diethyl ether additive on combustion performance and emissions of a compression ignition engine using biodiesel blends. Energy. 2019;179:928-37.
  • 3. Kumaravel S, Murugesan A, Kumaravel A. Tyre pyrolysis oil as an alternative fuel for diesel engines–A review. Renewable and Sustainable Energy Reviews. 2016;60:1678-85.
  • 4. Samad ATP, Putri DN, Perdani MS, Utami TS, Arbianti R, Hermansyah H. Design of portable biodiesel plant from waste cooking oil. Energy Procedia. 2018;153:263-8.
  • 5. Mohadesi M, Aghel B, Maleki M, Ansari A. Production of biodiesel from waste cooking oil using a homogeneous catalyst: Study of semi-industrial pilot of microreactor. Renewable Energy. 2019;136:677-82.
  • 6. Ma Y, Wang Q, Sun X, Wu C, Gao Z. Kinetics studies of biodiesel production from waste cooking oil using FeCl3-modified resin as heterogeneous catalyst. Renewable Energy. 2017;107:522-30.
  • 7. Konwar LJ, Boro J, Deka D. Review on latest developments in biodiesel production using carbon-based catalysts. Renewable and Sustainable Energy Reviews. 2014;29:546-64.
  • 8. Yaakob Z, Mohammad M, Alherbawi M, Alam Z, Sopian K. Overview of the production of biodiesel from waste cooking oil. Renewable and sustainable energy reviews. 2013;18:184-93.
  • 9. Melero JA, Bautista LF, Morales G, Iglesias J, Sánchez-Vázquez R. Acid-catalyzed production of biodiesel over arenesulfonic SBA-15: Insights into the role of water in the reaction network. Renewable Energy. 2015;75:425-32.
  • 10. Deshmane CA, Wright MW, Lachgar A, Rohlfing M, Liu Z, Le J, et al. A comparative study of solid carbon acid catalysts for the esterification of free fatty acids for biodiesel production. Evidence for the leaching of colloidal carbon. Bioresource technology. 2013;147:597-604.
  • 11. Tian M, Wang Z, Fu J, Lv P, Liang C, Li Z, et al. N-glycosylation as an effective strategy to enhance characteristics of Rhizomucor miehei lipase for biodiesel production. Enzyme and Microbial Technology. 2022;160:110072.
  • 12. Hu S, Wang Y, Han H. Utilization of waste freshwater mussel shell as an economic catalyst for biodiesel production. biomass and bioenergy. 2011;35(8):3627-35.
  • 13. Abdullah RF, Rashid U, Ibrahim ML, Hazmi B, Alharthi FA, Nehdi IA. Bifunctional nano-catalyst produced from palm kernel shell via hydrothermal-assisted carbonization for biodiesel production from waste cooking oil. Renewable and Sustainable Energy Reviews. 2021;137:110638.
  • 14. Akgül G, Sözer S, Culfa M. Atik Yağlardan Biyodizel Üretiminde Yenilikçi Biyokömür Katalizörü. TÜBAV Bilim Dergisi. 2017;10(4):29-39.

Fındık Kabuğu Tabanlı Heterojen Katalizörlerle Atık Yağlardan Biyodizel Üretimi

Yıl 2025, Cilt: 6 Sayı: 1, 33 - 42, 30.04.2025
https://doi.org/10.70562/tubid.1659612

Öz

Dünyadaki enerji ihtiyacının büyük bir kısmı petrokimyasal kaynaklardan, kömürden ve doğal gazdan sağlanıyor. İnsan nüfusu arttıkça enerji tüketimi de doğru orantılı artmaktadır. Fosil yakıtların hızla tükenmeye başlamasıyla birlikte alternatif enerji kaynakları enerji üretiminde önemli bir rol üstlenmeye başlamıştır. Bu yakıtlardan bazıları şunlardır; rüzgar enerjisi, jeotermal enerji, güneş enerjisi, hidroelektrik enerji, dalga enerjisi, hidrojen enerjisi ve biyokütle enerjisi. Biyokütle enerjisinden biri biyodizeldir. Biyokütle, çevreyi kirletmeyen yenilenebilir enerji kaynakları arasında özellikle gelişmekte olan ülkeler için uygulama alanı en geniş olan enerji kaynağıdır. Biyodizel üretiminde farklı ve yerli biyokütle temelli katalizörler geliştirilmesi bu çalışmanın amacıdır. Bu çalışmada, organik atık olarak fındık kabuğu kullanılmış heterojen katalizöre dönüştürülerek transesterifikasyon reaksiyonu sonucunda biyodizel elde edilmiştir. Biyodizelin kalitesi ve dönüşümü GC-MS analizi ile belirlenmiştir. Bu çalışmada atık fındık kabuğunun aktif karbona dönüştürülerek katalizör elde edilmesi ve bu katalizörlerin atık yağların transesterifikasyonu ile biyodizele dönüştürülmesi sonucunda çevreye duyarlı ve ekonomik bir biyodizel üretim yöntemi geliştirilmiştir.

Proje Numarası

2021-SİÜMÜH-052

Kaynakça

  • 1. Raj JVA, Bharathiraja B, Vijayakumar B, Arokiyaraj S, Iyyappan J, Kumar RP. Biodiesel production from microalgae Nannochloropsis oculata using heterogeneous Poly Ethylene Glycol (PEG) encapsulated ZnOMn2+ nanocatalyst. Bioresource technology. 2019;282:348-52.
  • 2. Dinesha P, Kumar S, Rosen MA. Combined effects of water emulsion and diethyl ether additive on combustion performance and emissions of a compression ignition engine using biodiesel blends. Energy. 2019;179:928-37.
  • 3. Kumaravel S, Murugesan A, Kumaravel A. Tyre pyrolysis oil as an alternative fuel for diesel engines–A review. Renewable and Sustainable Energy Reviews. 2016;60:1678-85.
  • 4. Samad ATP, Putri DN, Perdani MS, Utami TS, Arbianti R, Hermansyah H. Design of portable biodiesel plant from waste cooking oil. Energy Procedia. 2018;153:263-8.
  • 5. Mohadesi M, Aghel B, Maleki M, Ansari A. Production of biodiesel from waste cooking oil using a homogeneous catalyst: Study of semi-industrial pilot of microreactor. Renewable Energy. 2019;136:677-82.
  • 6. Ma Y, Wang Q, Sun X, Wu C, Gao Z. Kinetics studies of biodiesel production from waste cooking oil using FeCl3-modified resin as heterogeneous catalyst. Renewable Energy. 2017;107:522-30.
  • 7. Konwar LJ, Boro J, Deka D. Review on latest developments in biodiesel production using carbon-based catalysts. Renewable and Sustainable Energy Reviews. 2014;29:546-64.
  • 8. Yaakob Z, Mohammad M, Alherbawi M, Alam Z, Sopian K. Overview of the production of biodiesel from waste cooking oil. Renewable and sustainable energy reviews. 2013;18:184-93.
  • 9. Melero JA, Bautista LF, Morales G, Iglesias J, Sánchez-Vázquez R. Acid-catalyzed production of biodiesel over arenesulfonic SBA-15: Insights into the role of water in the reaction network. Renewable Energy. 2015;75:425-32.
  • 10. Deshmane CA, Wright MW, Lachgar A, Rohlfing M, Liu Z, Le J, et al. A comparative study of solid carbon acid catalysts for the esterification of free fatty acids for biodiesel production. Evidence for the leaching of colloidal carbon. Bioresource technology. 2013;147:597-604.
  • 11. Tian M, Wang Z, Fu J, Lv P, Liang C, Li Z, et al. N-glycosylation as an effective strategy to enhance characteristics of Rhizomucor miehei lipase for biodiesel production. Enzyme and Microbial Technology. 2022;160:110072.
  • 12. Hu S, Wang Y, Han H. Utilization of waste freshwater mussel shell as an economic catalyst for biodiesel production. biomass and bioenergy. 2011;35(8):3627-35.
  • 13. Abdullah RF, Rashid U, Ibrahim ML, Hazmi B, Alharthi FA, Nehdi IA. Bifunctional nano-catalyst produced from palm kernel shell via hydrothermal-assisted carbonization for biodiesel production from waste cooking oil. Renewable and Sustainable Energy Reviews. 2021;137:110638.
  • 14. Akgül G, Sözer S, Culfa M. Atik Yağlardan Biyodizel Üretiminde Yenilikçi Biyokömür Katalizörü. TÜBAV Bilim Dergisi. 2017;10(4):29-39.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Tulin Avcı Hansu 0000-0001-5441-4696

Raşit Atelge 0000-0002-0613-2501

Mustafa Kaya 0000-0002-0622-3163

Hilal Demir Kıvrak 0000-0001-8001-7854

Abdulaziz Atabani 0000-0001-6793-5589

Proje Numarası 2021-SİÜMÜH-052
Yayımlanma Tarihi 30 Nisan 2025
Gönderilme Tarihi 18 Mart 2025
Kabul Tarihi 10 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 1

Kaynak Göster

Vancouver Avcı Hansu T, Atelge R, Kaya M, Demir Kıvrak H, Atabani A. Fındık Kabuğu Tabanlı Heterojen Katalizörlerle Atık Yağlardan Biyodizel Üretimi. TUBİD. 2025;6(1):33-42.