Araştırma Makalesi
BibTex RIS Kaynak Göster

Isolation and Characterization of Bacillus spp. Producing Indole-3-Acetic Acid (IAA) and Solubilizing Inorganic Phosphate from the Rhizosphere of Medicinal Sage (Salvia officinalis)

Yıl 2025, Cilt: 12 Sayı: 3, 716 - 726, 23.07.2025
https://doi.org/10.30910/turkjans.1620479

Öz

The production of indole-3-acetic acid (IAA) is a key characteristic of plant growth-promoting bacteria (PGPR). This hormone, synthesized by PGPR in the rhizosphere, is responsible for the division, elongation, and differentiation of plant cells and plays a crucial role in various physiological mechanisms in plants. 21 bacterial isolates were obtained from the rhizosphere of medicinal sage (Salvia officinalis L.) in this study. This study aimed to characterize the indigenous bacterial community in the rhizosphere of S. officinalis and evaluate their potential as microbial fertilizers, focusing on their IAA production and phosphate solubilization capabilities. Among these isolates, 9 were identified as Bacillus sp. through morphological and biochemical tests as well as the MALDI-TOF MS method. Furthermore,9 isolates, 5 (BCM-3, BTM-1, BN-5, BCM-4, and BGM-13) demonstrated the ability to dissolve inorganic phosphate, while 6 (BCM-3, BCM-4, BSM-1, BSM-2, BTM-1, and BN-5) produced indole-3-acetic acid (IAA) in varying percentages. IAA production was assessed in nutrient broth (NB) medium supplemented with 0.2% L-tryptophan and measured at different incubation times. The results revealed that maximum IAA production by Bacillus cereus BCM-3 and BCM-4 was achieved after 3 days of incubation, with the highest production observed in BCM-3 (129.8 µg ml⁻¹). Furthermore, B. cereus BCM-3 and BCM-4 exhibited the highest inorganic phosphate solubilization performance among all tested Bacillus isolates. Our findings demonstrated that BCM-3 and BCM-4, isolated from the rhizosphere of medicinal sage, have significant potential for use as microbial fertilizer applications due to their high IAA production and inorganic phosphate solubilization abilities.

Teşekkür

Murat Güler thanks Prof. Dr. Khalid Mahmood Khavar for his advice on preparing articles.

Kaynakça

  • Abbas, Z. R., Al-Ezee, A. M. M., Authman, S. H. (2019). Siderophore production and phosphate solubilization by Bacillus cereus and Pseudomonas fluorescens isolated from Iraqi soils and soil characterization. International Journal of Pharmaceutical Quality Assurance, 10(01), 74-79.
  • Abdullahi, S., Muhammed, Y. G., Muhammad, A., Ahmed, J. M., & Shehu, D. (2022). Isolation and characterization of Bacillus spp. for plant growth promoting properties. Acta Biologica Marisiensis, 5(2), 47-58.
  • Akçura, S., & Çakmakçı, R. (2023). The effect of plant growth promoting bacteria on some plant traits in black cumin (Nigella damascena L.). ISPEC Journal of Agricultural Sciences, 7(3), 472-488.
  • Alemneh, A.A., Cawthray, G.R., Zhou, Y., Ryder, M.H., Denton, M.D. (2021). Ability to produce indole acetic acid is associated with improved phosphate solubilising activity of rhizobacteria. Archives of Microbiology, 203, 3825-3837.
  • Ali, N., Swarnkar, M. K., Veer, R., Kaushal, P., Pati, A.M. (2023). Temperature-induced modulation of stress-tolerant PGP genes bioprospected from Bacillus sp. IHBT-705 associated with saffron (Crocus sativus) rhizosphere: A natural-treasure trove of microbial biostimulants. Frontiers in Plant Science, 14, 1141538.
  • AL Kahtani, M.D., Fouda, A., Attia, K.A., Al-Otaibi, F., Eid, A. M., Ewais, E.E.D., Abdelaal, K.A. (2020). Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy, 10(9), 1325.
  • Anbi, A. A., Mirshekari, B., Eivazi, A., Yarnia, M., & Behrouzyar, E. K. (2020). PGPRs affected photosynthetic capacity and nutrient uptake in different Salvia species. Journal of Plant Nutrition, 43(1), 108-121.
  • Arif, M. S., Muhammad, R.I. A. Z., Shahzad, S. M., Yasmeen, T., Shafaqat, A.L.I., Akhtar, M.J. (2017). Phosphorus-mobilizing rhizobacterial strain Bacillus cereus GS6 improves symbiotic efficiency of soybean on an Aridisol amended with phosphorus-enriched compost. Pedosphere, 27(6), 1049-1061.
  • Batista, B. D., Dourado, M. N., Figueredo, E. F., Hortencio, R. O., Marques, J. P. R., Piotto, F. A., Bonatelli, M.L., Settles, M. L., Azevedo, J. L., Quecine, M. C. (2021). The auxin-producing Bacillus thuringiensis RZ2MS9 promotes the growth and modifies the root architecture of tomato (Solanum lycopersicum cv. Micro-Tom). Archives of Microbiology, 203(7), 3869-3882.
  • Cedeño-García, G. A., Gerding, M., Moraga, G., Inostroza, L., Fischer, S., Sepúlveda-Caamaño, M., & Oyarzúa, P. (2018). Plant growth promoting rhizobacteria with ACC deaminase activity isolated from Mediterranean dryland areas in Chile: Effects on early nodulation in alfalfa. Chilean Journal of Agricultural Research, 78(3), 360-369.
  • Cochard, B., Giroud, B., Crovadore, J., Chablais, R., Arminjon, L., Lefort, F. (2022). Endophytic PGPR from tomato roots: isolation, in vitro characterization and in vivo evaluation of treated tomatoes (Solanum lycopersicum L.). Microorganisms, 10(4), 765.
  • Compant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19, 29-37.
  • Çakmakçı, R., Haliloglu, K., Türkoğlu, A., Özkan, G., Kutlu, M., Varmazyari, A., Bocianowski, J. (2023). Effect of different Plant Growth-Promoting Rhizobacteria on biological soil properties, growth, yield and quality of oregano (Origanum onites L.). Agronomy, 13(10), 2511.
  • Çelikten, M., Bozkurt, İ.A. (2018). Determination of efficacies of bacteria ısolated from wheat rhizospheres on plant growth. Journal of Agricultural Faculty of Mustafa Kemal University, 23(1), 33-48.
  • Delfim, J., Schoebitz, M., Paulino, L., Hirzel, J., Zagal, E. (2018). Phosphorus availability in wheat, in volcanic soils inoculated with phosphate-solubilizing Bacillus thuringiensis. Sustainability, 10(1), 144.
  • Djuuna, I. A. F., Prabawardani, S., & Massora, M. (2022). Population distribution of phosphate-solubilizing microorganisms in agricultural soil. Microbes and Environments, 37(1), 21041.
  • Esertaş, Ü.Z.Ü., Bozdeveci, A., Uzunalioğlu, E., & Karaoğlu, Ş.A. (2024). Determination of plant growth promoting properties and bioremediation potentials of Bacillus mycoides Flügge and B. thuringiensis Berliner. Trakya University Journal of Natural Sciences, 25(1), 21-28.
  • Etesami, H., Glick, B.R. (2024). Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiological Research, 12, 7602.
  • Fahsi, N., Mahdi, I., Mesfioui, A., Biskri, L., Allaoui, A. (2021). Phosphate solubilizing rhizobacteria isolated from Jujube ziziphus lotus plant stimulate wheat germination rate and seedlings growth. Plant Biology, 9, 11583.
  • Figueredo, E. F., da Cruz, T. A., de Almeida, J. R., Batista, B. D., Marcon, J., de Andrade, P.A.M., Quecine, M. C. (2023). The key role of indole-3-acetic acid biosynthesis by Bacillus thuringiensis RZ2MS9 in promoting maize growth revealed by the ipdC gene knockout mediated by the CRISPR-Cas9 system. Microbiological Research, 266, 127218.
  • Gaikwad, S. D., Bhosale, P. A., Ukey, P. V.,Landage, K. B. (2021). Isolation and characterization of phosphate solubilizing bacteria from calcareous soil. International Journal of Plant & Soil Science, 33(24), 409-417.
  • Gang, S., Sharma, S., Saraf, M., Buck, M., & Schumacher, J. (2019). Analysis of indole-3-acetic acid (IAA) production in Klebsiella by LC-MS/MS and the Salkowski method. Bio-Protocol, 9(9), e3230-e3230. Genç, S., & Soysal, M.İ. (2018). Parametri̇k ve parametri̇k olmayan çoklu karşilaştirma testleri̇. Black Sea Journal of Engineering and Science, 1(1), 18-27.
  • Gomez-Ramirez, L.F., Uribe-Velez, D. (2021). Phosphorus solubilizing and mineralizing Bacillus spp. contribute to rice growth promotion using soil amended with rice straw. Current Microbiology, 78(3), 932-943.
  • Güler, M. (2024). Isolation and identification of phosphate solubilizing bacteria (PSB) from the rhizosphere of Thymus vulgaris L. ISPEC Journal of Agricultural Sciences, 8(4), 978-991.
  • Hyder, S., Gondal, A. S., Rizvi, Z. F., Ahmad, R., Alam, M. M., Hannan, A., Inam-ul-Haq, M. (2020). Characterization of native plant growth promoting rhizobacteria and their anti-oomycete potential against Phytophthora capsici affecting chilli pepper (Capsicum annum L.). Scientific Reports, 10(1), 13859.
  • Ibáñez, A., Diez-Galán, A., Cobos, R., Calvo-Peña, C., Barreiro, C., Medina-Turienzo, J., Coque, J.J.R. (2021). Using rhizosphere phosphate solubilizing bacteria to improve barley (Hordeum vulgare) plant productivity. Microorganisms, 9(8), 1619.
  • Kang, S. M., Khan, M. A., Hamayun, M., Kim, L. R., Kwon, E. H., Kang, Y. S., Lee, I. J. (2021). Phosphate-solubilizing Enterobacter ludwigii AFFR02 and Bacillus megaterium Mj1212 rescues alfalfa’s growth under post-drought stress. Agriculture, 11(6), 485.
  • Kong, X., Zhang, C., Zheng, H., Sun, M., Zhang, F., Zhang, M., & Ding, Z. (2020). Antagonistic interaction between auxin and SA signaling pathways regulates bacterial infection through lateral root in Arabidopsis. Cell Reports, 32(8).
  • Kumar, P., Pahal, V., Gupta, A., Vadhan, R., Chandra, H., & Dubey, R. C. (2020). Effect of silver nanoparticles and Bacillus cereus LPR2 on the growth of Zea mays. Scientific Reports, 10(1): 20409.
  • Krieg, N.R., Holt, J.G. (1984). Bergey's manual of systemic bacteriology. The William and Wilkins Co. Baltimore. (1), 964.
  • Lau, E. T., Tani, A., Khew, C. Y., Chua, Y. Q., San Hwang, S. (2020). Plant growth-promoting bacteria as potential bio-inoculants and biocontrol agents to promote black pepper plant cultivation. Microbiological Research, 240: 126549.
  • Lim, J. H., & Kim, S. D. (2009). Synergistic plant growth promotion by the indigenous auxins-producing PGPR Bacillus subtilis AH18 and Bacillus licheniforims K11. Journal of the Korean Society for Applied Biological Chemistry, 52, 531-538.
  • Lin, G. H., Chang, C. Y., & Lin, H. R. (2015). Systematic profiling of indole-3-acetic acid biosynthesis in bacteria using LC–MS/MS. Journal of Chromatography, 988: 53-58.
  • Lin, L., Li, C., Ren, Z., Qin, Y., Wang, R., Wang, J., & Xiong, X. (2023). Transcriptome profiling of genes regulated by phosphate-solubilizing bacteria Bacillus megaterium P68 in potato (Solanum tuberosum L.). Frontiers in Microbiology, 14, 1140752.
  • Linu, M.S., Asok, A.K., Thampi, M., Sreekumar, J., Jisha, M.S. (2019). Plant growth promoting traits of indigenous phosphate solubilizing Pseudomonas aeruginosa isolates from chilli (Capsicum annuum L.) rhizosphere. Communications in Soil Science and Plant Analysis, 50(4), 444-457.
  • Liu, X., Chen, C., Wang, J., Zou, S., & Long, X. (2021). Phosphorus solubilizing bacteria Bacillus thuringiensis and Pantoea ananatis simultaneously promote soil inorganic phosphate dissolution and soil Pb immobilization. Rhizosphere, 20, 100-448.
  • Marcelino, S., Hamdane, S., Gaspar, P. D., Paço, A. (2023). Sustainable agricultural practices for the production of medicinal and aromatic plants: Evidence and recommendations. Sustainability, 15(19), 14095.
  • Massucato, L. R., Almeida, S. R. D. A., Silva, M. B., Mosela, M., Zeffa, D. M., Nogueira, A. F., Gonçalves, L. S. A. (2022). Efficiency of combining strains Ag87 (Bacillus megaterium) and Ag94 (Lysinibacillus sp.) as phosphate solubilizers and growth promoters in maize. Microorganisms, 10(7), 1401.
  • Meena, R.K., Singh, R.K., Singh, N.P., Meena, S.K., Meena, V.S. (2015). Isolation of low temperature surviving plant growth–promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatalysis and Agricultural Biotechnology, 4(4),806-811.
  • Miljaković, D., Marinković, J., Balešević-Tubić, S. (2020). The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8(7), 1037.
  • Öksel, C., Balkan, A., Bilgin, O., Mirik, M., Başer, İ. (2022). Investigation of the effect of PGPR on yield and some yield components in winter wheat (Triticum aestivum L.). Turkish Journal of Field Crops, 27(1), 127-133.
  • Pakar, N. P., Mehmood, S., Ali, S., Zainab, N., Munis, M. F. H., Chaudhary, H.J. (2024). Microbial detoxification of chlorpyrifos, profenofos, monocrotophos, and dimethoate by a multifaceted rhizospheric Bacillus cereus strain PM38 and its potential for the growth promotion in cotton. Environmental Science and Pollution Research, 1-21.
  • Park, S. H., Elhiti, M., Wang, H., Xu, A., Brown, D., & Wang, A. (2017). Adventitious root formation of in vitro peach shoots is regulated by auxin and ethylene. Scientia Horticulturae, 226, 250-260.
  • Pikovskaya, R. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17, 362-370.
  • Prashanth, S., & Mathivanan, N. (2010). Growth promotion of groundnut by IAA producing rhizobacteria Bacillus licheniformis MML2501. Archives of Phytopathology and Plant Protection, 43(2), 191-208.
  • Qureshi, M. A., Ahmad, Z. A., Akhtar, N., Iqbal, A., Mujeeb, F., Shakir, M. A. (2012). Role of phosphate solubilizing bacteria (PSB) in enhancing P availability and promoting cotton growth. The Journal of Animal & Plant Sciences, 22(1), 204-210.
  • Raheem, A., Shaposhnikov, A., Belimov, A. A., Dodd, I. C., & Ali, B. (2018). Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress. Archives of Agronomy and Soil Science, 64(4), 574-587.
  • Rawat, P., Das, S., Shankhdhar, D., Shankhdhar, S.C. (2021). Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, 21(1), 49-68.
  • Saboor, M., Navid, S., Ali, B. (2024). Screening Bacillus strains for Auxin Production and Their Potential to Stimulate the Growth of Vigna radiata (L.). Journal of Medical and Life Sciences, 7(3), 511-520.
  • Saeid, A., Prochownik, E., Dobrowolska-Iwanek, J. (2018). Phosphorus solubilization by Bacillus species. Molecules, 23(11), 2897.
  • Sarwar, M., Kremer, R.J., (1995). Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology, 20(5), 282-285.
  • Sharma, Y., Fagan, J., Schaefer, J. (2019). Ethnobotany, phytochemistry, cultivation and medicinal properties of Garden sage (Salvia officinalis L.). Journal of Pharmacognosy and Phytochemistry, 8(3), 3139-3148.
  • Sivri, G.T., & Öksüz, Ö. (2019). Identification of Propionibacterium spp. isolated from mihaliç cheeses by MALDI-TOF MS. Journal of Tekirdag Agricultural Faculty, 16(2), 244-250.
  • Sindhu, S. S., Sehrawat, A., Sharma, R., Dahiya, A., Khandelwal, A. (2017). Belowground microbial crosstalk and rhizosphere biology. Plant-Microbe Interactions in Agro-Ecological Perspectives 2: 695-752.
  • Soares, A. S., Nascimento, V. L., De Oliveira, E. E., Jumbo, L. V., Dos Santos, G. R., Queiroz, L. L., de Souza Aguiar, R. W. (2023). Pseudomonas aeruginosa and Bacillus cereus isolated from Brazilian Cerrado soil act as phosphate-solubilizing bacteria. Current Microbiology, 80(5), 146.
  • Solntceva, V., Kostrzewa, M., Larrouy-Maumus, G. (2021). Detection of species-specific lipids by routine MALDI TOF mass spectrometry to unlock the challenges of microbial identification and antimicrobial susceptibility testing. Frontiers in Cellular and Infection Microbiology, 10, 621452.
  • Thakur, R., Soni, R., Dhar, H., Rana, A., Sharma, A., Kaushal, K., & Gulati, A. (2024). Enhancing saffron (Crocus sativus L.) growth in the Kashmir valley with resilient and widely effective Plant Growth-Promoting Rhizobacteria (PGPR) under field conditions. Industrial Crops and Products, 222, 119475.
  • Tsegaye, Z., Gizaw, B., Tefera, G., Feleke, A., Chaniyalew, S., Alemu, T., & Assefa, F. (2019). Isolation and biochemical characterization of Plant Growth Promoting (PGP) bacteria colonizing the rhizosphere of Tef crop during the seedling stage. Journal of Plant Science and Phytopathology, 3(1), 013-027.
  • Uçar, C. P., Selem, E., Tunçtürk, R., Tunçtürk, M., & Akköprü, A. (2023). The Effect of Some Endophytic Bacteria on Seedling Growth and Physiological Properties of Salvia officinalis L. Yuzuncu Yıl University Journal of Agricultural Sciences, 33(1), 130-139.
  • Ünlü, E., Şekerci, A.D., Yılmaz, S., Yetişir, H. (2023). Field trial of PGPR, Bacillus megaterium E-U2-1, on some vegetable species. Journal of Applied Biological Sciences, 17(1), 125-137.
  • Wagi, S., Ahmed, A. (2019). Bacillus spp.: potent microfactories of bacterial IAA. Microbiology, (7), 7258.
  • Widawati, S. (2020). Isolation of indole acetic acid (IAA) producing Bacillus siamensis from peat and optimization of the culture conditions for maximum IAA production. In IOP Conference Series: Earth and Environmental Science, September, 572 (1), p. 012025. Bandar Lampung, Indonesia.
  • Widawati, S., Suliasih, Susilowati, D. N., & Sumardi. (2024). The population and potential of nitrogen-fixing bacteria from sandalwood (Santalum album L.) rhizosphere as a producer of phytohormones and stress resistance indicators. The 4th Internatıonal Conference on Applıed Sciences, Mathematıcs, and Informatics: ICASMI 2022, September, 2970 (1), p. 050006. Bandar Lampung, Indonesia.
  • Yolci, M. S., Tuncturk, R., Eryigit, T., & Tuncturk, M. (2022). Boron toxicity and PGPR phytoremediation effects on physiological and biochemical parameters of medical sage (Salvia officinalis L.). Journal of Elementology, 27(4).
  • Zhang, X., Li, H., Li, M., Wen, G., Hu, Z. (2019). Influence of individual and combined application of biochar, Bacillus megaterium, and phosphatase on phosphorus availability in calcareous soil. Journal of Soils and Sediments, 19(1), 3688-3698.
  • Zhou, H., Ren, Z. H., Zu, X., Yu, X. Y., Zhu, H. J., Li, X. J. & Liu, E. M. (2021). Efficacy of plant growth-promoting bacteria Bacillus cereus YN917 for biocontrol of rice blast. Frontiers in Microbiology, 12: 684888.

Tıbbi Adaçayı (Salvia officinalis L.) Rizosferinden İndol-3-Asetik Asit (IAA) Üreten ve İnorganik Fosfatı Çözen Bacillus Türlerinin İzolasyonu ve Karakterizasyonu

Yıl 2025, Cilt: 12 Sayı: 3, 716 - 726, 23.07.2025
https://doi.org/10.30910/turkjans.1620479

Öz

İndol-3-asetik asit (IAA) üretimi, bitki büyümesini teşvik eden bakterilerin (PGPR) temel bir özelliğidir. Rizosferde bitki gelişimini teşvik eden rizobakteri (PGPR) tarafından sentezlenen bu hormon, bitki hücrelerinin bölünmesinden, uzamasından ve farklılaşmasından sorumludur ve bitkilerde çeşitli fizyolojik mekanizmalarda önemli bir rol oynar. Bu çalışmada, tıbbi adaçayı (Salvia officinalis L.) rizosferinden 21 bakteri izolatı elde edilmiştir. Bu izolatlardan 9 tanesinin morfolojik, biyokimyasal testler ve MALDI TOF MS yöntemi ile Bacillus sp. olduğu belirlenmiştir. Dokuz izolat arasından beş tanesinin (BCM-3, BTM-1, BN-5, BCM-4 ve BGM-13) inorganik fosfat çözdüğü, 6 tanesinin (BCM-3, BCM-4, BSM-1, BSM-2, BTM-1 ve BN-5) farklı oranlarda IAA ürettiği belirlenmiştir. IAA üretimi, % 0,2 L-triptofan eklenmiş nutrient broth (NB) ortamında farklı inkübasyon sürelerinde gerçekleşmiştir. Sonuçlar, Bacillus cereus BCM-3 ve BCM-4'ün maksimum IAA üretiminin 3 günlük inkübasyon süresinde gerçekleştiğini ortaya koymuştur. En iyi IAA üretimi, 3 günlük inkübasyon süresinde B. cereus BCM-3'ten (129.8 µg ml⁻¹) elde edilmiştir. Ayrıca, B. cereus BCM-3 ve BCM-4 izolatlarının test edilen tüm Basillus izolatları arasında en iyi inorganik fosfat çözme performansını sergilemiştir. Bulgularımız, tıbbi adaçayı topraklarından izole edilen BCM-3 ve BCM-4 izolatlarının yüksek IAA üretimi ve inorganik fosfat çözme yetenekleri nedeniyle mikrobiyal gübre uygulamaları için önemli bir potansiyele sahip olduğunu göstermiştir. Bu çalışma, Salvia officinalis (adaçayı) rizosferindeki yerel bakteriyel topluluğu karakterize etmeyi, IAA üretme ve inorganik fosfat çözme yetenekleri ile mikrobiyal gübre potansiyellerini değerlendirmeyi amaçlamıştır.

Kaynakça

  • Abbas, Z. R., Al-Ezee, A. M. M., Authman, S. H. (2019). Siderophore production and phosphate solubilization by Bacillus cereus and Pseudomonas fluorescens isolated from Iraqi soils and soil characterization. International Journal of Pharmaceutical Quality Assurance, 10(01), 74-79.
  • Abdullahi, S., Muhammed, Y. G., Muhammad, A., Ahmed, J. M., & Shehu, D. (2022). Isolation and characterization of Bacillus spp. for plant growth promoting properties. Acta Biologica Marisiensis, 5(2), 47-58.
  • Akçura, S., & Çakmakçı, R. (2023). The effect of plant growth promoting bacteria on some plant traits in black cumin (Nigella damascena L.). ISPEC Journal of Agricultural Sciences, 7(3), 472-488.
  • Alemneh, A.A., Cawthray, G.R., Zhou, Y., Ryder, M.H., Denton, M.D. (2021). Ability to produce indole acetic acid is associated with improved phosphate solubilising activity of rhizobacteria. Archives of Microbiology, 203, 3825-3837.
  • Ali, N., Swarnkar, M. K., Veer, R., Kaushal, P., Pati, A.M. (2023). Temperature-induced modulation of stress-tolerant PGP genes bioprospected from Bacillus sp. IHBT-705 associated with saffron (Crocus sativus) rhizosphere: A natural-treasure trove of microbial biostimulants. Frontiers in Plant Science, 14, 1141538.
  • AL Kahtani, M.D., Fouda, A., Attia, K.A., Al-Otaibi, F., Eid, A. M., Ewais, E.E.D., Abdelaal, K.A. (2020). Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy, 10(9), 1325.
  • Anbi, A. A., Mirshekari, B., Eivazi, A., Yarnia, M., & Behrouzyar, E. K. (2020). PGPRs affected photosynthetic capacity and nutrient uptake in different Salvia species. Journal of Plant Nutrition, 43(1), 108-121.
  • Arif, M. S., Muhammad, R.I. A. Z., Shahzad, S. M., Yasmeen, T., Shafaqat, A.L.I., Akhtar, M.J. (2017). Phosphorus-mobilizing rhizobacterial strain Bacillus cereus GS6 improves symbiotic efficiency of soybean on an Aridisol amended with phosphorus-enriched compost. Pedosphere, 27(6), 1049-1061.
  • Batista, B. D., Dourado, M. N., Figueredo, E. F., Hortencio, R. O., Marques, J. P. R., Piotto, F. A., Bonatelli, M.L., Settles, M. L., Azevedo, J. L., Quecine, M. C. (2021). The auxin-producing Bacillus thuringiensis RZ2MS9 promotes the growth and modifies the root architecture of tomato (Solanum lycopersicum cv. Micro-Tom). Archives of Microbiology, 203(7), 3869-3882.
  • Cedeño-García, G. A., Gerding, M., Moraga, G., Inostroza, L., Fischer, S., Sepúlveda-Caamaño, M., & Oyarzúa, P. (2018). Plant growth promoting rhizobacteria with ACC deaminase activity isolated from Mediterranean dryland areas in Chile: Effects on early nodulation in alfalfa. Chilean Journal of Agricultural Research, 78(3), 360-369.
  • Cochard, B., Giroud, B., Crovadore, J., Chablais, R., Arminjon, L., Lefort, F. (2022). Endophytic PGPR from tomato roots: isolation, in vitro characterization and in vivo evaluation of treated tomatoes (Solanum lycopersicum L.). Microorganisms, 10(4), 765.
  • Compant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19, 29-37.
  • Çakmakçı, R., Haliloglu, K., Türkoğlu, A., Özkan, G., Kutlu, M., Varmazyari, A., Bocianowski, J. (2023). Effect of different Plant Growth-Promoting Rhizobacteria on biological soil properties, growth, yield and quality of oregano (Origanum onites L.). Agronomy, 13(10), 2511.
  • Çelikten, M., Bozkurt, İ.A. (2018). Determination of efficacies of bacteria ısolated from wheat rhizospheres on plant growth. Journal of Agricultural Faculty of Mustafa Kemal University, 23(1), 33-48.
  • Delfim, J., Schoebitz, M., Paulino, L., Hirzel, J., Zagal, E. (2018). Phosphorus availability in wheat, in volcanic soils inoculated with phosphate-solubilizing Bacillus thuringiensis. Sustainability, 10(1), 144.
  • Djuuna, I. A. F., Prabawardani, S., & Massora, M. (2022). Population distribution of phosphate-solubilizing microorganisms in agricultural soil. Microbes and Environments, 37(1), 21041.
  • Esertaş, Ü.Z.Ü., Bozdeveci, A., Uzunalioğlu, E., & Karaoğlu, Ş.A. (2024). Determination of plant growth promoting properties and bioremediation potentials of Bacillus mycoides Flügge and B. thuringiensis Berliner. Trakya University Journal of Natural Sciences, 25(1), 21-28.
  • Etesami, H., Glick, B.R. (2024). Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiological Research, 12, 7602.
  • Fahsi, N., Mahdi, I., Mesfioui, A., Biskri, L., Allaoui, A. (2021). Phosphate solubilizing rhizobacteria isolated from Jujube ziziphus lotus plant stimulate wheat germination rate and seedlings growth. Plant Biology, 9, 11583.
  • Figueredo, E. F., da Cruz, T. A., de Almeida, J. R., Batista, B. D., Marcon, J., de Andrade, P.A.M., Quecine, M. C. (2023). The key role of indole-3-acetic acid biosynthesis by Bacillus thuringiensis RZ2MS9 in promoting maize growth revealed by the ipdC gene knockout mediated by the CRISPR-Cas9 system. Microbiological Research, 266, 127218.
  • Gaikwad, S. D., Bhosale, P. A., Ukey, P. V.,Landage, K. B. (2021). Isolation and characterization of phosphate solubilizing bacteria from calcareous soil. International Journal of Plant & Soil Science, 33(24), 409-417.
  • Gang, S., Sharma, S., Saraf, M., Buck, M., & Schumacher, J. (2019). Analysis of indole-3-acetic acid (IAA) production in Klebsiella by LC-MS/MS and the Salkowski method. Bio-Protocol, 9(9), e3230-e3230. Genç, S., & Soysal, M.İ. (2018). Parametri̇k ve parametri̇k olmayan çoklu karşilaştirma testleri̇. Black Sea Journal of Engineering and Science, 1(1), 18-27.
  • Gomez-Ramirez, L.F., Uribe-Velez, D. (2021). Phosphorus solubilizing and mineralizing Bacillus spp. contribute to rice growth promotion using soil amended with rice straw. Current Microbiology, 78(3), 932-943.
  • Güler, M. (2024). Isolation and identification of phosphate solubilizing bacteria (PSB) from the rhizosphere of Thymus vulgaris L. ISPEC Journal of Agricultural Sciences, 8(4), 978-991.
  • Hyder, S., Gondal, A. S., Rizvi, Z. F., Ahmad, R., Alam, M. M., Hannan, A., Inam-ul-Haq, M. (2020). Characterization of native plant growth promoting rhizobacteria and their anti-oomycete potential against Phytophthora capsici affecting chilli pepper (Capsicum annum L.). Scientific Reports, 10(1), 13859.
  • Ibáñez, A., Diez-Galán, A., Cobos, R., Calvo-Peña, C., Barreiro, C., Medina-Turienzo, J., Coque, J.J.R. (2021). Using rhizosphere phosphate solubilizing bacteria to improve barley (Hordeum vulgare) plant productivity. Microorganisms, 9(8), 1619.
  • Kang, S. M., Khan, M. A., Hamayun, M., Kim, L. R., Kwon, E. H., Kang, Y. S., Lee, I. J. (2021). Phosphate-solubilizing Enterobacter ludwigii AFFR02 and Bacillus megaterium Mj1212 rescues alfalfa’s growth under post-drought stress. Agriculture, 11(6), 485.
  • Kong, X., Zhang, C., Zheng, H., Sun, M., Zhang, F., Zhang, M., & Ding, Z. (2020). Antagonistic interaction between auxin and SA signaling pathways regulates bacterial infection through lateral root in Arabidopsis. Cell Reports, 32(8).
  • Kumar, P., Pahal, V., Gupta, A., Vadhan, R., Chandra, H., & Dubey, R. C. (2020). Effect of silver nanoparticles and Bacillus cereus LPR2 on the growth of Zea mays. Scientific Reports, 10(1): 20409.
  • Krieg, N.R., Holt, J.G. (1984). Bergey's manual of systemic bacteriology. The William and Wilkins Co. Baltimore. (1), 964.
  • Lau, E. T., Tani, A., Khew, C. Y., Chua, Y. Q., San Hwang, S. (2020). Plant growth-promoting bacteria as potential bio-inoculants and biocontrol agents to promote black pepper plant cultivation. Microbiological Research, 240: 126549.
  • Lim, J. H., & Kim, S. D. (2009). Synergistic plant growth promotion by the indigenous auxins-producing PGPR Bacillus subtilis AH18 and Bacillus licheniforims K11. Journal of the Korean Society for Applied Biological Chemistry, 52, 531-538.
  • Lin, G. H., Chang, C. Y., & Lin, H. R. (2015). Systematic profiling of indole-3-acetic acid biosynthesis in bacteria using LC–MS/MS. Journal of Chromatography, 988: 53-58.
  • Lin, L., Li, C., Ren, Z., Qin, Y., Wang, R., Wang, J., & Xiong, X. (2023). Transcriptome profiling of genes regulated by phosphate-solubilizing bacteria Bacillus megaterium P68 in potato (Solanum tuberosum L.). Frontiers in Microbiology, 14, 1140752.
  • Linu, M.S., Asok, A.K., Thampi, M., Sreekumar, J., Jisha, M.S. (2019). Plant growth promoting traits of indigenous phosphate solubilizing Pseudomonas aeruginosa isolates from chilli (Capsicum annuum L.) rhizosphere. Communications in Soil Science and Plant Analysis, 50(4), 444-457.
  • Liu, X., Chen, C., Wang, J., Zou, S., & Long, X. (2021). Phosphorus solubilizing bacteria Bacillus thuringiensis and Pantoea ananatis simultaneously promote soil inorganic phosphate dissolution and soil Pb immobilization. Rhizosphere, 20, 100-448.
  • Marcelino, S., Hamdane, S., Gaspar, P. D., Paço, A. (2023). Sustainable agricultural practices for the production of medicinal and aromatic plants: Evidence and recommendations. Sustainability, 15(19), 14095.
  • Massucato, L. R., Almeida, S. R. D. A., Silva, M. B., Mosela, M., Zeffa, D. M., Nogueira, A. F., Gonçalves, L. S. A. (2022). Efficiency of combining strains Ag87 (Bacillus megaterium) and Ag94 (Lysinibacillus sp.) as phosphate solubilizers and growth promoters in maize. Microorganisms, 10(7), 1401.
  • Meena, R.K., Singh, R.K., Singh, N.P., Meena, S.K., Meena, V.S. (2015). Isolation of low temperature surviving plant growth–promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatalysis and Agricultural Biotechnology, 4(4),806-811.
  • Miljaković, D., Marinković, J., Balešević-Tubić, S. (2020). The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8(7), 1037.
  • Öksel, C., Balkan, A., Bilgin, O., Mirik, M., Başer, İ. (2022). Investigation of the effect of PGPR on yield and some yield components in winter wheat (Triticum aestivum L.). Turkish Journal of Field Crops, 27(1), 127-133.
  • Pakar, N. P., Mehmood, S., Ali, S., Zainab, N., Munis, M. F. H., Chaudhary, H.J. (2024). Microbial detoxification of chlorpyrifos, profenofos, monocrotophos, and dimethoate by a multifaceted rhizospheric Bacillus cereus strain PM38 and its potential for the growth promotion in cotton. Environmental Science and Pollution Research, 1-21.
  • Park, S. H., Elhiti, M., Wang, H., Xu, A., Brown, D., & Wang, A. (2017). Adventitious root formation of in vitro peach shoots is regulated by auxin and ethylene. Scientia Horticulturae, 226, 250-260.
  • Pikovskaya, R. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17, 362-370.
  • Prashanth, S., & Mathivanan, N. (2010). Growth promotion of groundnut by IAA producing rhizobacteria Bacillus licheniformis MML2501. Archives of Phytopathology and Plant Protection, 43(2), 191-208.
  • Qureshi, M. A., Ahmad, Z. A., Akhtar, N., Iqbal, A., Mujeeb, F., Shakir, M. A. (2012). Role of phosphate solubilizing bacteria (PSB) in enhancing P availability and promoting cotton growth. The Journal of Animal & Plant Sciences, 22(1), 204-210.
  • Raheem, A., Shaposhnikov, A., Belimov, A. A., Dodd, I. C., & Ali, B. (2018). Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress. Archives of Agronomy and Soil Science, 64(4), 574-587.
  • Rawat, P., Das, S., Shankhdhar, D., Shankhdhar, S.C. (2021). Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, 21(1), 49-68.
  • Saboor, M., Navid, S., Ali, B. (2024). Screening Bacillus strains for Auxin Production and Their Potential to Stimulate the Growth of Vigna radiata (L.). Journal of Medical and Life Sciences, 7(3), 511-520.
  • Saeid, A., Prochownik, E., Dobrowolska-Iwanek, J. (2018). Phosphorus solubilization by Bacillus species. Molecules, 23(11), 2897.
  • Sarwar, M., Kremer, R.J., (1995). Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology, 20(5), 282-285.
  • Sharma, Y., Fagan, J., Schaefer, J. (2019). Ethnobotany, phytochemistry, cultivation and medicinal properties of Garden sage (Salvia officinalis L.). Journal of Pharmacognosy and Phytochemistry, 8(3), 3139-3148.
  • Sivri, G.T., & Öksüz, Ö. (2019). Identification of Propionibacterium spp. isolated from mihaliç cheeses by MALDI-TOF MS. Journal of Tekirdag Agricultural Faculty, 16(2), 244-250.
  • Sindhu, S. S., Sehrawat, A., Sharma, R., Dahiya, A., Khandelwal, A. (2017). Belowground microbial crosstalk and rhizosphere biology. Plant-Microbe Interactions in Agro-Ecological Perspectives 2: 695-752.
  • Soares, A. S., Nascimento, V. L., De Oliveira, E. E., Jumbo, L. V., Dos Santos, G. R., Queiroz, L. L., de Souza Aguiar, R. W. (2023). Pseudomonas aeruginosa and Bacillus cereus isolated from Brazilian Cerrado soil act as phosphate-solubilizing bacteria. Current Microbiology, 80(5), 146.
  • Solntceva, V., Kostrzewa, M., Larrouy-Maumus, G. (2021). Detection of species-specific lipids by routine MALDI TOF mass spectrometry to unlock the challenges of microbial identification and antimicrobial susceptibility testing. Frontiers in Cellular and Infection Microbiology, 10, 621452.
  • Thakur, R., Soni, R., Dhar, H., Rana, A., Sharma, A., Kaushal, K., & Gulati, A. (2024). Enhancing saffron (Crocus sativus L.) growth in the Kashmir valley with resilient and widely effective Plant Growth-Promoting Rhizobacteria (PGPR) under field conditions. Industrial Crops and Products, 222, 119475.
  • Tsegaye, Z., Gizaw, B., Tefera, G., Feleke, A., Chaniyalew, S., Alemu, T., & Assefa, F. (2019). Isolation and biochemical characterization of Plant Growth Promoting (PGP) bacteria colonizing the rhizosphere of Tef crop during the seedling stage. Journal of Plant Science and Phytopathology, 3(1), 013-027.
  • Uçar, C. P., Selem, E., Tunçtürk, R., Tunçtürk, M., & Akköprü, A. (2023). The Effect of Some Endophytic Bacteria on Seedling Growth and Physiological Properties of Salvia officinalis L. Yuzuncu Yıl University Journal of Agricultural Sciences, 33(1), 130-139.
  • Ünlü, E., Şekerci, A.D., Yılmaz, S., Yetişir, H. (2023). Field trial of PGPR, Bacillus megaterium E-U2-1, on some vegetable species. Journal of Applied Biological Sciences, 17(1), 125-137.
  • Wagi, S., Ahmed, A. (2019). Bacillus spp.: potent microfactories of bacterial IAA. Microbiology, (7), 7258.
  • Widawati, S. (2020). Isolation of indole acetic acid (IAA) producing Bacillus siamensis from peat and optimization of the culture conditions for maximum IAA production. In IOP Conference Series: Earth and Environmental Science, September, 572 (1), p. 012025. Bandar Lampung, Indonesia.
  • Widawati, S., Suliasih, Susilowati, D. N., & Sumardi. (2024). The population and potential of nitrogen-fixing bacteria from sandalwood (Santalum album L.) rhizosphere as a producer of phytohormones and stress resistance indicators. The 4th Internatıonal Conference on Applıed Sciences, Mathematıcs, and Informatics: ICASMI 2022, September, 2970 (1), p. 050006. Bandar Lampung, Indonesia.
  • Yolci, M. S., Tuncturk, R., Eryigit, T., & Tuncturk, M. (2022). Boron toxicity and PGPR phytoremediation effects on physiological and biochemical parameters of medical sage (Salvia officinalis L.). Journal of Elementology, 27(4).
  • Zhang, X., Li, H., Li, M., Wen, G., Hu, Z. (2019). Influence of individual and combined application of biochar, Bacillus megaterium, and phosphatase on phosphorus availability in calcareous soil. Journal of Soils and Sediments, 19(1), 3688-3698.
  • Zhou, H., Ren, Z. H., Zu, X., Yu, X. Y., Zhu, H. J., Li, X. J. & Liu, E. M. (2021). Efficacy of plant growth-promoting bacteria Bacillus cereus YN917 for biocontrol of rice blast. Frontiers in Microbiology, 12: 684888.
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tıbbi ve Aromatik Bitkiler, Toprak Bilimleri ve Bitki Besleme (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Murat Güler 0000-0002-3074-6458

Yayımlanma Tarihi 23 Temmuz 2025
Gönderilme Tarihi 15 Ocak 2025
Kabul Tarihi 6 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 3

Kaynak Göster

APA Güler, M. (2025). Isolation and Characterization of Bacillus spp. Producing Indole-3-Acetic Acid (IAA) and Solubilizing Inorganic Phosphate from the Rhizosphere of Medicinal Sage (Salvia officinalis). Turkish Journal of Agricultural and Natural Sciences, 12(3), 716-726. https://doi.org/10.30910/turkjans.1620479