Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 12 Sayı: 3, 613 - 626, 23.07.2025
https://doi.org/10.30910/turkjans.1667623

Öz

Kaynakça

  • Abdel, C. G., Murad, I., & Al-Rawi, T. (2011). Response of mungbean (Vigna radiata L., Wilczek) to gibberellic acid (GA3) rates and varying irrigation frequencies. International Journal of Biosciences, 1, 85-92.
  • Akan, S., & Horzum, Ö. (2023). Preharvest nitrogen and boron application preserve quality characteristics of red beet under storage conditions. Gesunde Pflanzen, 75(1), 127-138. https://doi.org/10.1007/s10343-022-00682-7
  • Akan, S., Yarali Karakan, F., & Horzum, Ö. (2022). Differential response of softneck and hardneck garlic ecotypes to quality attributes for long-term storage. Emirates Journal of Food and Agriculture, 34(4). https://doi.org/10.9755/ejfa.2022.v34.i4.2845
  • Alharby, H. F., Rizwan, M., Iftikhar, A., Hussaini, K. M., ur Rehman, M. Z., Bamagoos, A. A., Alharbi, B. M., Asrar, M., Yasmeen, T., & Ali, S. (2021). Effect of gibberellic acid and titanium dioxide nanoparticles on growth, antioxidant defense system, and mineral nutrient uptake in wheat. Ecotoxicology and Environmental Safety, 221, 112436. https://doi.org/10.1016/j.ecoenv.2021.112436
  • Araya, T., von Wirén, N., & Takahashi, H. (2016). CLE peptide signaling and nitrogen interactions in plant root development. Plant Molecular Biology, 91, 607-615. https://doi.org/10.1007/s11103-016-0472-9
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1-15. https://doi.org/10.1104/pp.24.1.1
  • Bagnazari, M., Saidi, M., Mohammadi, M., Khademi, O., & Nagaraja, G. (2018). Pre-harvest CaCl2 and GA3 treatments improve postharvest quality of green bell peppers (Capsicum annum L.) during storage period. Scientia Horticulturae, 240, 258-267. https://doi.org/10.1016/j.scienta.2018.06.043
  • Ballantyne, D. J. (1995). Cultivar, photoperiod, and gibberellin influence shoot elongation and photosynthetic capacity of hardy azaleas. HortScience, 30(2), 257-259. http://dx.doi.org/10.21273/HORTSCI.30.2.257
  • Barboza-Barquero, L., Nagel, K. A., Jansen, M., Klasen, J. R., Kastenholz, B., Braun, S., Bleise, B., Brehm, T., Koornneef, M., & Fiorani, F. (2015). Phenotype of Arabidopsis thaliana semi-dwarfs with deep roots and high growth rates under water-limiting conditions is independent of the GA5 loss-of-function alleles. Annals of Botany, 116, 321-331. https://doi.org/10.1093/aob/mcv099
  • Ben Rhouma, M., Kriaa, M., Ben Nasr, Y., Mellouli, L., & Kammoun, R. (2020). A new endophytic Fusarium oxysporum gibberellic acid: Optimization of production using combined strategies of experimental designs and potency on tomato growth under stress condition. Hindawi BioMed Research International, 4587148. https://doi.org/10.1155/2020/4587148
  • Bidadi, H., Yamaguchi, S., Asahina, M., & Satoh, S. (2010). Effects of shoot-applied gibberellin/gibberellin-biosynthesis inhibitors on root growth and expression of gibberellin biosynthesis genes in Arabidopsis thaliana. Plant Root, 4, 4-11. https://doi.org/10.3117/plantroot.4.4
  • Bukovac, M. J., & Witter, S. H. (1956). Gibberellic acid and higher plants: I: General growth responses. Agricultural Experiment Station Michigan Quarterly Bulletin, 39, 307-320.
  • Cai, N., Chen, C., Wan, C., & Chen, J. (2021). Effects of pre-harvest gibberellic acid spray on endogenous hormones and fruit quality of kumquat (Citrus japonica) fruits. New Zealand Journal of Crop and Horticultural Science, 49(2-3), 211-224. https://doi.org/10.1080/01140671.2020.1806084
  • Cassina, L., Tassi, E., Morelli, E., Giorgetti, L., Remorini, D., Chaney, R. L., & Barbafieri, M. (2011). Exogenous cytokinin treatments of an Ni hyperaccumulator, Alyssum murale, grown in a serpentine soil: Implications for phytoextraction. International Journal of Phytoremediation, 13, 90-101. https://doi.org/10.1080/15226514.2011.568538
  • Chauhan, A., Rajput, N., Kumar, A., Verma, J. S., & Chaudhry, A. K. (2018). Interactive effects of gibberellic acid and salt stress on growth parameters and chlorophyll content in oat cultivars. Journal of Environmental Biology, 39(5), 639-646. https://doi.org/10.22438/jeb/39/5/MRN-615
  • Chen, S., Wang, X. J., Tan, G. F., Zhou, W. Q., & Wang, G. L. (2020). Gibberellin and the plant growth retardant paclobutrazol altered fruit shape and ripening in tomato. Protoplasma, 257, 853-861. https://doi.org/10.1007/s00709-019-01471-2
  • Chu, G., Chen, T., Wang, Z., Yang, J., & Zhang, J. (2014). Reprint of “Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice.” Field Crops Research, 165, 36-48. https://doi.org/10.1016/j.fcr.2014.06.026
  • Colebrook, E. H., Thomas, S. G., Phillips, A. L., & Hedden, P. (2014). The role of gibberellin signaling in plant responses to abiotic stress. Journal of Experimental Biology, 217(1), 67-75. https://doi.org/10.1242/jeb.089938
  • da Costa de Quadros, C., Lima, K. O., Bueno, C. H. L., dos Santos Fogaça, F. H., da Rocha, M., & Prentice, C. (2020). Effect of the edible coating with protein hydrolysate on cherry tomatoes shelf life. Journal of Food Processing and Preservation, 44(10). https://doi.org/10.1111/jfpp.14760
  • Datta, J. K., Nag, S., Banerjee, A., & Mondal, N. K. (2009). Impact of salt stress on five varieties of wheat (Triticum aestivum L.) cultivars under laboratory condition. Journal of Applied Sciences and Environmental Management, 13(3), 93-97. https://dx.doi.org/10.4314/jasem.v13i3.55372
  • Demes, R., Satheesh, N., & Fanta, S. W. (2021). Effect of different concentrations of the gibberellic acid and calcium chloride dipping on quality and shelf-life of Kochoro variety tomato. Philippine Journal of Science, 150(1). http://dx.doi.org/10.56899/150.01.30
  • Duguma, H. T. (2022). Potential applications and limitations of edible coatings for maintaining tomato quality and shelf life. International Journal of Food Science and Technology, 57(3), 1353-1366. https://doi.org/10.1111/ijfs.15407
  • El Sabagh, A., Islam, M. S., Hossain, A., Iqbal, M. A., Mubeen, M., Waleed, M., Reginato, M., Battaglia, M., Ahmed, S., Rehman, A., Arif, M., Athar, H. U. R., Ratnasekera, D., Danish, S., Raza, M. A., Rajendran, K., Mushtaq, M., Skalicky, M., Brestic, M., Soufan, W., Fahad, S., Pandey, S., Kamran, M., Datta, R., & Abdelhamid, M. T. (2022). Phytohormones as growth regulators during abiotic stress tolerance in plants. Frontiers in Agronomy, 4, 765068. https://doi.org/10.3389/fagro.2022.765068
  • Emongor, V. E. (2007). Gibberellic acid (GA3) influence on vegetative growth, nodulation and yield of cowpea (Vigna unguiculata L. Walp). Journal of Agronomy, 6, 509-517. https://doi.org/10.3923/ja.2007.509.517
  • FAOSTAT. (2022). Crops and livestock products. Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#data. Accessed 25 Oct 2022.
  • Fishel, F. M. (2006). Plant growth regulators (Document PI-139). Pesticide Information Office, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
  • Gang, C., Li, J., Chen, Y., Wang, Y., Li, H., Pan, B., & Odeh, I. (2015). Synergistic effect of chemical treatments on storage quality and chilling injury of honey peaches. Journal of Food Processing and Preservation, 39(6), 1108-1117. https://doi.org/10.1111/jfpp.12325
  • Gupta, R., & Chakrabarty, S. K. (2013). Gibberellic acid in plants: Still a mystery unresolved. Plant Signaling & Behavior, 8(9). https://doi.org/10.4161/psb.25504
  • Hedden, P., & Sponsel, V. (2015). A century of gibberellin research. Journal of Plant Growth Regulation, 34, 740-760. https://doi.org/10.1007/s00344-015-9546-1
  • Iqbal, H. F., Tahir, A., Khalid, M. N., Haque, I. I., & Ahmad, A. N. (2001). Response of chickpea (Cicer arietinum L.) growth towards the foliar application of gibberellic acid at different stages. Pakistan Journal of Biological Sciences, 4, 433-434. https://doi.org/10.3923/pjbs.2001.433.434
  • Iqbal, N., Nazar, R., Khan, M. I. R., Masood, A., & Khan, N. A. (2011). Role of gibberellins in regulation of source-sink relations under optimal and limiting environmental conditions. Current Science, 100, 998-1007.
  • Islam, M. S., Hasan, M. K., Islam, M. R., Chowdhury, M. K., Pramanik, M. H., Iqbal, M. A., Rajendran, K., Iqbal, R., Soufan, W., Kamran, M., Liyun, L., & El Sabagh, A. (2023). Water relations and yield characteristics of mungbean as influenced by foliar application of gibberellic acid (GA3). Frontiers in Ecology and Evolution, 11, 1048768. https://doi.org/10.3389/fevo.2023.1048768
  • Jong, M. D., Mariani, C., & Vriezen, W. H. (2009). The role of auxin and gibberellin in tomato fruit set. Journal of Experimental Botany, 60, 1523-1532. https://doi.org/10.1093/jxb/erp094
  • Kacar, B., Katkat, A. V., & Ozturk, Ş. (2006). Bitki fiziolojisi (2nd ed.). Nobel Yayınları.
  • Kazemi, M. (2014). Effect of gibberellic acid and potassium nitrate spray on vegetative growth and reproductive characteristics of tomato. Journal of Biological and Environmental Sciences, 8(22).
  • Kim, J. S., Ezura, K., Lee, J., Kojima, M., Takebayashi, Y., Sakakibara, H., Ariizumi, T., & Ezura, H. (2020). The inhibition of SlIAA9 mimics an increase in endogenous auxin and mediates changes in auxin and gibberellin signalling during parthenocarpic fruit development in tomato. Journal of Plant Physiology, 252, 153238. https://doi.org/10.1016/j.jplph.2020.153238
  • Kirmani, S. N., Wani, G. M., Wani, M. S., Ghani, M. Y., Abid, M., Muzamil, S., Raja, H., & Malik, A. R. (2013). Effect of preharvest application of calcium chloride (CaCl2), gibberellic acid (GA3) and naphthalenic acetic acid (NAA) on storage of plum (Prunus salicina L.) cv. Santa Rosa under ambient storage conditions. African Journal of Agricultural Research, 8(9), 812-818. https://doi.org/10.5897/AJAR12.1708
  • Khalloufia, M., Martínez-Andújar, C., Lachaâl, M., Karray-Bouraoui, N., Pérez-Alfocea, F., & Albacete, A. (2017). The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance. Journal of Plant Physiology, 214, 134-144. https://doi.org/10.1016/j.jplph.2017.04.012
  • Li, Y. H., Wu, Y. J., Wu, B., Zum, M. H., Zhang, Z., & Sum, G. M. (2011). Exogenous gibberellic acid increases the fruit weight of ‘Comte de Paris’ pineapple by enlarging flesh cells without negative effects on fruit quality. Acta Physiologiae Plantarum, 33, 1715-1722. https://doi.org/10.1007/s11738-010-0708-2
  • Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. https://doi.org/10.1042/bst0110591
  • Mariotti, L., Picciarelli, P., Lombardi, L., & Ceccarelli, N. (2011). Fruit-set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin, and bioactive gibberellin contents. Journal of Plant Growth Regulation, 30, 405-415. https://doi.org/10.1007/s00344-011-9204-1
  • Matos, F. S., Freitas, I. A. S., Pereira, V. L. G., & Pires, W. K. L. (2020). Effect of gibberellin on growth and development of Spondias tuberosa seedlings. Revista Caatinga, 33(4), 1124-1130. https://doi.org/10.1590/1983-21252020v33n427rc
  • Moncada, A., Vetrano, F., Esposito, A., & Miceli, A. (2020). Fertigation management and growth-promoting treatments affect tomato transplant production and plant growth after transplant. Agronomy, 10(10), 1504. https://doi.org/10.3390/agronomy10101504
  • Mukati, S., Raidas, D. K., & Choudhary, B. (2019). Effect of gibberellic acid on growth, quality and yield of tomato varieties (Lycopersicon esculentum Mill.). Journal of Pharmacognosy and Phytochemistry, 8(2), 737-740. https://doi.org/10.6084/M9.FIGSHARE.1226390
  • Niu, B., Shao, P., Chen, H., & Sun, P. (2019). Structural and physiochemical characterization of novel hydrophobic packaging films based on pullulan derivatives for fruits preservation. Carbohydrate Polymers, 208, 276-284. https://doi.org/10.1016/j.carbpol.2018.12.070
  • Panigrahi, J., Gheewala, B., Patel, M., Patel, N., & Gantait, S. (2017). Gibberellic acid coating: A novel approach to expand the shelf-life in green chilli (Capsicum annuum L.). Scientia Horticulturae, 225, 581-588. https://doi.org/10.1016/j.scienta.2017.07.059
  • Pérez-Jiménez, M., Pazos-Navarro, M., López-Marín, J., Gálvez, A., Varó, P., & del Amor, F. M. (2015). Foliar application of plant growth regulators changes the nutrient composition of sweet pepper (Capsicum annuum L.). Scientia Horticulturae, 194, 188-193. https://doi.org/10.1016/j.scienta.2015.08.002
  • Plackett, A. R. G., & Wilson, Z. A. (2016). Gibberellins and plant reproduction. Annual Plant Reviews, 49, 323-358. https://doi.org/10.1002/9781119312994.apr0540
  • Qureshi, K. M., Chughtai, S., Qureshi, U. S., & Abbasi, N. A. (2013). Impact of exogenous application of salt and growth regulators on growth and yield of strawberry. Pakistan Journal of Botany, 45, 1179-1185.
  • Rahman, M. S., Saki, M. J., Hosain, M. T., & Rashid, S. (2019). Cumulative effect of zinc and gibberellic acid on yield and quality of tomato. International Journal of Biosciences, 14(3), 350-360.
  • Rana, K., Chauhan, N., & Sharma, J. B. (2020). Effect of photoperiod and gibberellic acid (GA3) on flowering and fruiting of strawberry – A review. Journal of Pharmacognosy and Phytochemistry, 9(6), 1651-1655. https://doi.org/10.22271/phyto.2020.v9.i6x.13185
  • Rappaport, L. (1956). Growth regulating metabolites. California Agriculture, 10, 4.
  • Rokaya, P. R., Baral, D. R., Gautam, D. M., Shrestha, A. K., & Paudyal, K. P. (2016). Effect of pre-harvest application of gibberellic acid on fruit quality and shelf life of mandarin (Citrus reticulata Blanco). American Journal of Plant Sciences, 7(07), 1033. https://doi.org/10.4236/ajps.2016.77098
  • Rostami, S., & Azhdarpoor, A. (2019). The application of plant growth regulators to improve phytoremediation of contaminated soils: A review. Chemosphere, 220, 818-827. https://doi.org/10.1016/j.chemosphere.2018.12.203
  • Serrani, J. C., Sanjuán, R., Ruiz-Rivero, O., Fos, M., & García-Martínez, J. L. (2007). Gibberellin regulation of fruit set and growth in tomato. Plant Physiology, 145. https://doi.org/10.1104/pp.107.098335
  • Singh, M., John, S. A., Rout, S., & Patra, S. S. (2015). Effect of GA3 and NAA on growth and quality of garden pea (Pisum sativum L.) cv. arkel. The Bioscan, 10, 381-383.
  • Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology, 16, 1-9. https://doi.org/10.1186/s12951-018-0408-4
  • Singh, S., & Singh, T. (2019). Effect of gibberellic acid on growth, yield and quality parameters of chilli (Capsicum annuum L.). Journal of Pharmacognosy and Phytochemistry, 8(2), 2021-2023.
  • Shah, S. H. (2007). Effects of salt stress on mustard as affected by gibberellic acid application. General and Applied Plant Physiology, 33(1-2), 97-106.
  • Tanimoto, E. (2012). Tall or short? Slender or thick? A plant strategy for regulating elongation growth of roots by low concentrations of gibberellin. Annals of Botany, 110, 373-381. https://doi.org/10.1093/aob/mcs049
  • Tyagi, K., Maoz, I., Kochanek, B., Sela, N., Lerno, L., Ebeler, S., & Lichter, A. (2021). Cytokinin but not gibberellin application had major impact on the phenylpropanoid pathway in grape. Horticulture Research, 8, 51. https://doi.org/10.1038/s41438-021-00488-0
  • Vetrano, F., Moncada, A., & Miceli, A. (2020). Use of gibberellic acid to increase the salt tolerance of leaf lettuce and rocket grown in a floating system. Agronomy, 10, 505. https://doi.org/10.3390/agronomy10040505
  • Wang, F., Zhu, D., Huang, X., Li, S., Gong, Y., Yao, Q., Fu, X., Fan, L. M., & Deng, X. W. (2009). Biochemical insights on degradation of Arabidopsis DELLA proteins gained from a cell-free assay system. Plant Cell Online, 21, 2378-2390. https://doi.org/10.1105/tpc.108.065433
  • Witter, S. H., & Bukovac, M. J. (1957). Some effects of gibberellin on flowering and fruit setting. Plant Physiology, 32, 39-41. https://doi.org/10.1104/pp.32.1.39
  • Xiao, X., Yang, M., Dong, W., Zhou, C., Shi, L., Chen, W., Cao, S., Yang, Z., & Li, S. (2022). Gibberellic acid inhibited chlorophyll degradation in post-harvest okras. Postharvest Biology and Technology, 190, 111951. https://doi.org/10.1016/j.postharvbio.2022.111951
  • Yang, C., Yang, L., Yang, Y., & Ouyang, Z. (2004). Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agricultural Water Management, 70, 67-81. https://doi.org/10.1016/j.agwat.2004.05.003
  • Yaxley, J. R., Ross, J. R., Sherriff, L. J., & Reid, J. B. (2001). Gibberellin biosynthesis mutations and root development in pea. Plant Physiology, 125, 627-633. https://doi.org/10.1104/pp.125.2.627
  • Zhang, H., Xue, Y., Wang, Z., Yang, J., & Zhang, J. (2009). Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Research, 113, 31-40. https://doi.org/10.1016/j.fcr.2009.04.004

Impact of GA3 Application at Different Times and Methods on Tomato Growth and Fruit Shelf Life

Yıl 2025, Cilt: 12 Sayı: 3, 613 - 626, 23.07.2025
https://doi.org/10.30910/turkjans.1667623

Öz

Gibberellic acids (GAs) are vital plant growth regulators that significantly influence plant growth, development, and responses to stress. This study examined the effects of applying gibberellic acid (GA3) to tomato plants and their growing medium at various intervals. The focus was on plant growth, fruit development, and postharvest quality. The results indicated that applying GA3 every two weeks notably enhanced plant height and stem diameter. However, more frequent applications had a negative impact on fruit size, overall yield, and root fresh weight. Regarding postharvest quality, tomatoes treated with GA3 every four weeks experienced less weight loss and decay, mainly when GA3 was applied through the growing medium. Furthermore, plant applications helped maintain the brightness of the fruit peel color. These findings underscore the importance of optimizing the timing and method of GA3 application to balance growth promotion, yield, and postharvest quality effectively. Future research should investigate alternative application strategies to maximize the benefits of GA3 while minimizing potential drawbacks.

Kaynakça

  • Abdel, C. G., Murad, I., & Al-Rawi, T. (2011). Response of mungbean (Vigna radiata L., Wilczek) to gibberellic acid (GA3) rates and varying irrigation frequencies. International Journal of Biosciences, 1, 85-92.
  • Akan, S., & Horzum, Ö. (2023). Preharvest nitrogen and boron application preserve quality characteristics of red beet under storage conditions. Gesunde Pflanzen, 75(1), 127-138. https://doi.org/10.1007/s10343-022-00682-7
  • Akan, S., Yarali Karakan, F., & Horzum, Ö. (2022). Differential response of softneck and hardneck garlic ecotypes to quality attributes for long-term storage. Emirates Journal of Food and Agriculture, 34(4). https://doi.org/10.9755/ejfa.2022.v34.i4.2845
  • Alharby, H. F., Rizwan, M., Iftikhar, A., Hussaini, K. M., ur Rehman, M. Z., Bamagoos, A. A., Alharbi, B. M., Asrar, M., Yasmeen, T., & Ali, S. (2021). Effect of gibberellic acid and titanium dioxide nanoparticles on growth, antioxidant defense system, and mineral nutrient uptake in wheat. Ecotoxicology and Environmental Safety, 221, 112436. https://doi.org/10.1016/j.ecoenv.2021.112436
  • Araya, T., von Wirén, N., & Takahashi, H. (2016). CLE peptide signaling and nitrogen interactions in plant root development. Plant Molecular Biology, 91, 607-615. https://doi.org/10.1007/s11103-016-0472-9
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1-15. https://doi.org/10.1104/pp.24.1.1
  • Bagnazari, M., Saidi, M., Mohammadi, M., Khademi, O., & Nagaraja, G. (2018). Pre-harvest CaCl2 and GA3 treatments improve postharvest quality of green bell peppers (Capsicum annum L.) during storage period. Scientia Horticulturae, 240, 258-267. https://doi.org/10.1016/j.scienta.2018.06.043
  • Ballantyne, D. J. (1995). Cultivar, photoperiod, and gibberellin influence shoot elongation and photosynthetic capacity of hardy azaleas. HortScience, 30(2), 257-259. http://dx.doi.org/10.21273/HORTSCI.30.2.257
  • Barboza-Barquero, L., Nagel, K. A., Jansen, M., Klasen, J. R., Kastenholz, B., Braun, S., Bleise, B., Brehm, T., Koornneef, M., & Fiorani, F. (2015). Phenotype of Arabidopsis thaliana semi-dwarfs with deep roots and high growth rates under water-limiting conditions is independent of the GA5 loss-of-function alleles. Annals of Botany, 116, 321-331. https://doi.org/10.1093/aob/mcv099
  • Ben Rhouma, M., Kriaa, M., Ben Nasr, Y., Mellouli, L., & Kammoun, R. (2020). A new endophytic Fusarium oxysporum gibberellic acid: Optimization of production using combined strategies of experimental designs and potency on tomato growth under stress condition. Hindawi BioMed Research International, 4587148. https://doi.org/10.1155/2020/4587148
  • Bidadi, H., Yamaguchi, S., Asahina, M., & Satoh, S. (2010). Effects of shoot-applied gibberellin/gibberellin-biosynthesis inhibitors on root growth and expression of gibberellin biosynthesis genes in Arabidopsis thaliana. Plant Root, 4, 4-11. https://doi.org/10.3117/plantroot.4.4
  • Bukovac, M. J., & Witter, S. H. (1956). Gibberellic acid and higher plants: I: General growth responses. Agricultural Experiment Station Michigan Quarterly Bulletin, 39, 307-320.
  • Cai, N., Chen, C., Wan, C., & Chen, J. (2021). Effects of pre-harvest gibberellic acid spray on endogenous hormones and fruit quality of kumquat (Citrus japonica) fruits. New Zealand Journal of Crop and Horticultural Science, 49(2-3), 211-224. https://doi.org/10.1080/01140671.2020.1806084
  • Cassina, L., Tassi, E., Morelli, E., Giorgetti, L., Remorini, D., Chaney, R. L., & Barbafieri, M. (2011). Exogenous cytokinin treatments of an Ni hyperaccumulator, Alyssum murale, grown in a serpentine soil: Implications for phytoextraction. International Journal of Phytoremediation, 13, 90-101. https://doi.org/10.1080/15226514.2011.568538
  • Chauhan, A., Rajput, N., Kumar, A., Verma, J. S., & Chaudhry, A. K. (2018). Interactive effects of gibberellic acid and salt stress on growth parameters and chlorophyll content in oat cultivars. Journal of Environmental Biology, 39(5), 639-646. https://doi.org/10.22438/jeb/39/5/MRN-615
  • Chen, S., Wang, X. J., Tan, G. F., Zhou, W. Q., & Wang, G. L. (2020). Gibberellin and the plant growth retardant paclobutrazol altered fruit shape and ripening in tomato. Protoplasma, 257, 853-861. https://doi.org/10.1007/s00709-019-01471-2
  • Chu, G., Chen, T., Wang, Z., Yang, J., & Zhang, J. (2014). Reprint of “Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice.” Field Crops Research, 165, 36-48. https://doi.org/10.1016/j.fcr.2014.06.026
  • Colebrook, E. H., Thomas, S. G., Phillips, A. L., & Hedden, P. (2014). The role of gibberellin signaling in plant responses to abiotic stress. Journal of Experimental Biology, 217(1), 67-75. https://doi.org/10.1242/jeb.089938
  • da Costa de Quadros, C., Lima, K. O., Bueno, C. H. L., dos Santos Fogaça, F. H., da Rocha, M., & Prentice, C. (2020). Effect of the edible coating with protein hydrolysate on cherry tomatoes shelf life. Journal of Food Processing and Preservation, 44(10). https://doi.org/10.1111/jfpp.14760
  • Datta, J. K., Nag, S., Banerjee, A., & Mondal, N. K. (2009). Impact of salt stress on five varieties of wheat (Triticum aestivum L.) cultivars under laboratory condition. Journal of Applied Sciences and Environmental Management, 13(3), 93-97. https://dx.doi.org/10.4314/jasem.v13i3.55372
  • Demes, R., Satheesh, N., & Fanta, S. W. (2021). Effect of different concentrations of the gibberellic acid and calcium chloride dipping on quality and shelf-life of Kochoro variety tomato. Philippine Journal of Science, 150(1). http://dx.doi.org/10.56899/150.01.30
  • Duguma, H. T. (2022). Potential applications and limitations of edible coatings for maintaining tomato quality and shelf life. International Journal of Food Science and Technology, 57(3), 1353-1366. https://doi.org/10.1111/ijfs.15407
  • El Sabagh, A., Islam, M. S., Hossain, A., Iqbal, M. A., Mubeen, M., Waleed, M., Reginato, M., Battaglia, M., Ahmed, S., Rehman, A., Arif, M., Athar, H. U. R., Ratnasekera, D., Danish, S., Raza, M. A., Rajendran, K., Mushtaq, M., Skalicky, M., Brestic, M., Soufan, W., Fahad, S., Pandey, S., Kamran, M., Datta, R., & Abdelhamid, M. T. (2022). Phytohormones as growth regulators during abiotic stress tolerance in plants. Frontiers in Agronomy, 4, 765068. https://doi.org/10.3389/fagro.2022.765068
  • Emongor, V. E. (2007). Gibberellic acid (GA3) influence on vegetative growth, nodulation and yield of cowpea (Vigna unguiculata L. Walp). Journal of Agronomy, 6, 509-517. https://doi.org/10.3923/ja.2007.509.517
  • FAOSTAT. (2022). Crops and livestock products. Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#data. Accessed 25 Oct 2022.
  • Fishel, F. M. (2006). Plant growth regulators (Document PI-139). Pesticide Information Office, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
  • Gang, C., Li, J., Chen, Y., Wang, Y., Li, H., Pan, B., & Odeh, I. (2015). Synergistic effect of chemical treatments on storage quality and chilling injury of honey peaches. Journal of Food Processing and Preservation, 39(6), 1108-1117. https://doi.org/10.1111/jfpp.12325
  • Gupta, R., & Chakrabarty, S. K. (2013). Gibberellic acid in plants: Still a mystery unresolved. Plant Signaling & Behavior, 8(9). https://doi.org/10.4161/psb.25504
  • Hedden, P., & Sponsel, V. (2015). A century of gibberellin research. Journal of Plant Growth Regulation, 34, 740-760. https://doi.org/10.1007/s00344-015-9546-1
  • Iqbal, H. F., Tahir, A., Khalid, M. N., Haque, I. I., & Ahmad, A. N. (2001). Response of chickpea (Cicer arietinum L.) growth towards the foliar application of gibberellic acid at different stages. Pakistan Journal of Biological Sciences, 4, 433-434. https://doi.org/10.3923/pjbs.2001.433.434
  • Iqbal, N., Nazar, R., Khan, M. I. R., Masood, A., & Khan, N. A. (2011). Role of gibberellins in regulation of source-sink relations under optimal and limiting environmental conditions. Current Science, 100, 998-1007.
  • Islam, M. S., Hasan, M. K., Islam, M. R., Chowdhury, M. K., Pramanik, M. H., Iqbal, M. A., Rajendran, K., Iqbal, R., Soufan, W., Kamran, M., Liyun, L., & El Sabagh, A. (2023). Water relations and yield characteristics of mungbean as influenced by foliar application of gibberellic acid (GA3). Frontiers in Ecology and Evolution, 11, 1048768. https://doi.org/10.3389/fevo.2023.1048768
  • Jong, M. D., Mariani, C., & Vriezen, W. H. (2009). The role of auxin and gibberellin in tomato fruit set. Journal of Experimental Botany, 60, 1523-1532. https://doi.org/10.1093/jxb/erp094
  • Kacar, B., Katkat, A. V., & Ozturk, Ş. (2006). Bitki fiziolojisi (2nd ed.). Nobel Yayınları.
  • Kazemi, M. (2014). Effect of gibberellic acid and potassium nitrate spray on vegetative growth and reproductive characteristics of tomato. Journal of Biological and Environmental Sciences, 8(22).
  • Kim, J. S., Ezura, K., Lee, J., Kojima, M., Takebayashi, Y., Sakakibara, H., Ariizumi, T., & Ezura, H. (2020). The inhibition of SlIAA9 mimics an increase in endogenous auxin and mediates changes in auxin and gibberellin signalling during parthenocarpic fruit development in tomato. Journal of Plant Physiology, 252, 153238. https://doi.org/10.1016/j.jplph.2020.153238
  • Kirmani, S. N., Wani, G. M., Wani, M. S., Ghani, M. Y., Abid, M., Muzamil, S., Raja, H., & Malik, A. R. (2013). Effect of preharvest application of calcium chloride (CaCl2), gibberellic acid (GA3) and naphthalenic acetic acid (NAA) on storage of plum (Prunus salicina L.) cv. Santa Rosa under ambient storage conditions. African Journal of Agricultural Research, 8(9), 812-818. https://doi.org/10.5897/AJAR12.1708
  • Khalloufia, M., Martínez-Andújar, C., Lachaâl, M., Karray-Bouraoui, N., Pérez-Alfocea, F., & Albacete, A. (2017). The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance. Journal of Plant Physiology, 214, 134-144. https://doi.org/10.1016/j.jplph.2017.04.012
  • Li, Y. H., Wu, Y. J., Wu, B., Zum, M. H., Zhang, Z., & Sum, G. M. (2011). Exogenous gibberellic acid increases the fruit weight of ‘Comte de Paris’ pineapple by enlarging flesh cells without negative effects on fruit quality. Acta Physiologiae Plantarum, 33, 1715-1722. https://doi.org/10.1007/s11738-010-0708-2
  • Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. https://doi.org/10.1042/bst0110591
  • Mariotti, L., Picciarelli, P., Lombardi, L., & Ceccarelli, N. (2011). Fruit-set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin, and bioactive gibberellin contents. Journal of Plant Growth Regulation, 30, 405-415. https://doi.org/10.1007/s00344-011-9204-1
  • Matos, F. S., Freitas, I. A. S., Pereira, V. L. G., & Pires, W. K. L. (2020). Effect of gibberellin on growth and development of Spondias tuberosa seedlings. Revista Caatinga, 33(4), 1124-1130. https://doi.org/10.1590/1983-21252020v33n427rc
  • Moncada, A., Vetrano, F., Esposito, A., & Miceli, A. (2020). Fertigation management and growth-promoting treatments affect tomato transplant production and plant growth after transplant. Agronomy, 10(10), 1504. https://doi.org/10.3390/agronomy10101504
  • Mukati, S., Raidas, D. K., & Choudhary, B. (2019). Effect of gibberellic acid on growth, quality and yield of tomato varieties (Lycopersicon esculentum Mill.). Journal of Pharmacognosy and Phytochemistry, 8(2), 737-740. https://doi.org/10.6084/M9.FIGSHARE.1226390
  • Niu, B., Shao, P., Chen, H., & Sun, P. (2019). Structural and physiochemical characterization of novel hydrophobic packaging films based on pullulan derivatives for fruits preservation. Carbohydrate Polymers, 208, 276-284. https://doi.org/10.1016/j.carbpol.2018.12.070
  • Panigrahi, J., Gheewala, B., Patel, M., Patel, N., & Gantait, S. (2017). Gibberellic acid coating: A novel approach to expand the shelf-life in green chilli (Capsicum annuum L.). Scientia Horticulturae, 225, 581-588. https://doi.org/10.1016/j.scienta.2017.07.059
  • Pérez-Jiménez, M., Pazos-Navarro, M., López-Marín, J., Gálvez, A., Varó, P., & del Amor, F. M. (2015). Foliar application of plant growth regulators changes the nutrient composition of sweet pepper (Capsicum annuum L.). Scientia Horticulturae, 194, 188-193. https://doi.org/10.1016/j.scienta.2015.08.002
  • Plackett, A. R. G., & Wilson, Z. A. (2016). Gibberellins and plant reproduction. Annual Plant Reviews, 49, 323-358. https://doi.org/10.1002/9781119312994.apr0540
  • Qureshi, K. M., Chughtai, S., Qureshi, U. S., & Abbasi, N. A. (2013). Impact of exogenous application of salt and growth regulators on growth and yield of strawberry. Pakistan Journal of Botany, 45, 1179-1185.
  • Rahman, M. S., Saki, M. J., Hosain, M. T., & Rashid, S. (2019). Cumulative effect of zinc and gibberellic acid on yield and quality of tomato. International Journal of Biosciences, 14(3), 350-360.
  • Rana, K., Chauhan, N., & Sharma, J. B. (2020). Effect of photoperiod and gibberellic acid (GA3) on flowering and fruiting of strawberry – A review. Journal of Pharmacognosy and Phytochemistry, 9(6), 1651-1655. https://doi.org/10.22271/phyto.2020.v9.i6x.13185
  • Rappaport, L. (1956). Growth regulating metabolites. California Agriculture, 10, 4.
  • Rokaya, P. R., Baral, D. R., Gautam, D. M., Shrestha, A. K., & Paudyal, K. P. (2016). Effect of pre-harvest application of gibberellic acid on fruit quality and shelf life of mandarin (Citrus reticulata Blanco). American Journal of Plant Sciences, 7(07), 1033. https://doi.org/10.4236/ajps.2016.77098
  • Rostami, S., & Azhdarpoor, A. (2019). The application of plant growth regulators to improve phytoremediation of contaminated soils: A review. Chemosphere, 220, 818-827. https://doi.org/10.1016/j.chemosphere.2018.12.203
  • Serrani, J. C., Sanjuán, R., Ruiz-Rivero, O., Fos, M., & García-Martínez, J. L. (2007). Gibberellin regulation of fruit set and growth in tomato. Plant Physiology, 145. https://doi.org/10.1104/pp.107.098335
  • Singh, M., John, S. A., Rout, S., & Patra, S. S. (2015). Effect of GA3 and NAA on growth and quality of garden pea (Pisum sativum L.) cv. arkel. The Bioscan, 10, 381-383.
  • Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology, 16, 1-9. https://doi.org/10.1186/s12951-018-0408-4
  • Singh, S., & Singh, T. (2019). Effect of gibberellic acid on growth, yield and quality parameters of chilli (Capsicum annuum L.). Journal of Pharmacognosy and Phytochemistry, 8(2), 2021-2023.
  • Shah, S. H. (2007). Effects of salt stress on mustard as affected by gibberellic acid application. General and Applied Plant Physiology, 33(1-2), 97-106.
  • Tanimoto, E. (2012). Tall or short? Slender or thick? A plant strategy for regulating elongation growth of roots by low concentrations of gibberellin. Annals of Botany, 110, 373-381. https://doi.org/10.1093/aob/mcs049
  • Tyagi, K., Maoz, I., Kochanek, B., Sela, N., Lerno, L., Ebeler, S., & Lichter, A. (2021). Cytokinin but not gibberellin application had major impact on the phenylpropanoid pathway in grape. Horticulture Research, 8, 51. https://doi.org/10.1038/s41438-021-00488-0
  • Vetrano, F., Moncada, A., & Miceli, A. (2020). Use of gibberellic acid to increase the salt tolerance of leaf lettuce and rocket grown in a floating system. Agronomy, 10, 505. https://doi.org/10.3390/agronomy10040505
  • Wang, F., Zhu, D., Huang, X., Li, S., Gong, Y., Yao, Q., Fu, X., Fan, L. M., & Deng, X. W. (2009). Biochemical insights on degradation of Arabidopsis DELLA proteins gained from a cell-free assay system. Plant Cell Online, 21, 2378-2390. https://doi.org/10.1105/tpc.108.065433
  • Witter, S. H., & Bukovac, M. J. (1957). Some effects of gibberellin on flowering and fruit setting. Plant Physiology, 32, 39-41. https://doi.org/10.1104/pp.32.1.39
  • Xiao, X., Yang, M., Dong, W., Zhou, C., Shi, L., Chen, W., Cao, S., Yang, Z., & Li, S. (2022). Gibberellic acid inhibited chlorophyll degradation in post-harvest okras. Postharvest Biology and Technology, 190, 111951. https://doi.org/10.1016/j.postharvbio.2022.111951
  • Yang, C., Yang, L., Yang, Y., & Ouyang, Z. (2004). Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agricultural Water Management, 70, 67-81. https://doi.org/10.1016/j.agwat.2004.05.003
  • Yaxley, J. R., Ross, J. R., Sherriff, L. J., & Reid, J. B. (2001). Gibberellin biosynthesis mutations and root development in pea. Plant Physiology, 125, 627-633. https://doi.org/10.1104/pp.125.2.627
  • Zhang, H., Xue, Y., Wang, Z., Yang, J., & Zhang, J. (2009). Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Research, 113, 31-40. https://doi.org/10.1016/j.fcr.2009.04.004
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sera Bitkileri Yetiştirme ve Islahı
Bölüm Araştırma Makalesi
Yazarlar

Hakan Başak 0000-0002-1128-4059

Gamze Çakırer Seyrek 0000-0002-6225-9208

Özge Horzum 0000-0003-2030-5613

Köksal Demir 0000-0001-6120-7249

Yayımlanma Tarihi 23 Temmuz 2025
Gönderilme Tarihi 28 Mart 2025
Kabul Tarihi 24 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 3

Kaynak Göster

APA Başak, H., Çakırer Seyrek, G., Horzum, Ö., Demir, K. (2025). Impact of GA3 Application at Different Times and Methods on Tomato Growth and Fruit Shelf Life. Turkish Journal of Agricultural and Natural Sciences, 12(3), 613-626. https://doi.org/10.30910/turkjans.1667623