Araştırma Makalesi
BibTex RIS Kaynak Göster

CELLULOSE NANOFIBERS (CNF) AND CELLULOSE NANOCRYSTALS (CNC) AS HIGH-PERFORMANCE FILLERS IMPROVING THE MECHANICAL, OPTICAL, AND SURFACE PROPERTIES OF RECYCLED NEWSPAPER

Yıl 2025, Cilt: 9 Sayı: 1, 122 - 140, 30.04.2025
https://doi.org/10.32328/turkjforsci.1587158

Öz

The increasing focus on sustainability and waste reduction has led to significant interest in recycling paper products. This study investigates the use of two types of nanocellulose (CNF and CNC) as filler materials in the production of recycled newspaper. The aim is to evaluate the effects of these nanocelluloses on the mechanical, optical, and surface properties of the recycled newspaper (ONP). Mechanical properties such as tensile strength, burst strength, and tear resistance were measured to determine the material’s durability. Optical properties, including brightness, whiteness, and yellowness, were assessed to understand the aesthetic quality of the recycled paper. Surface roughness values (Ra, Rz, Rq) were also analyzed to evaluate the surface quality, which is essential for printability. The results show that CNF significantly improved the tensile and tear strengths, as well as reduced the yellowness, making the paper more visually appealing. CNC, on the other hand, demonstrated a notable enhancement in burst strength but had a less pronounced effect on other properties. This study demonstrates that nanocellulose, particularly CNF, is a promising additive for improving specific mechanical and optical characteristics of recycled newspaper, making it more suitable for various applications

Etik Beyan

This study does not require any ethics committee approval.

Destekleyen Kurum

The study received no financial support.

Kaynakça

  • Abushammala, H., Masood, M. A., Ghulam, S. T., & Mao, J. (2023). On the conversion of paper waste and rejects into high-value materials and energy. Sustainability, 15(8), 6915. https://doi.org/10.3390/su15086915
  • Ataeefard, M. (2014). Influence of paper surface characteristics on digital printing quality. Surface Engineering, 30(7), 529–534. https://doi.org/10.1179/1743294414Y.0000000264
  • Aydemir, C., Kašikovic, N., Horvath, C., & Durdevic, S. (2021). Effect of paper surface properties on ink color change, print gloss and light fastness resistance. Cellulose Chemistry and Technology, 55(1–2), 133–139. https://doi.org/10.35812/CelluloseChemTechnol.2021.55.14
  • Bai, L., Liu, Y., Ding, A., Ren, N., Li, G., & Liang, H. (2019). Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs). Chemosphere, 217, 76–84. https://doi.org/10.1016/j.chemosphere.2018.10.219
  • Balea, A., Fuente, E., Monte, M. C., Merayo, N., Campano, C., Negro, C., & Blanco, A. (2020). Industrial application of nanocelluloses in papermaking: A review of challenges, technical solutions, and market perspectives. Molecules, 25(3), 526. https://doi.org/10.3390/molecules25030526
  • Balea, A., Merayo, N., Fuente, E., Negro, C., Delgado-Aguilar, M., Mutje, P., & Blanco, A. (2018). Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper. Cellulose, 25(2), 1339–1351. https://doi.org/10.1007/s10570-017-1618-x
  • Bárta, J., Hájková, K., Sikora, A., Jurczyková, T., Popelková, D., & Kalous, P. (2023). Effect of a nanocellulose addition on the mechanical properties of paper. Polymers, 16(1), 73. https://doi.org/10.3390/polym16010073
  • Brancato, A., Walsh, F. L., Sabo, R., & Banerjee, S. (2007). Effect of Recycling on the Properties of Paper Surfaces. Industrial & Engineering Chemistry Research, 46(26), 9103–9106. https://doi.org/10.1021/ie070826a
  • Campano, C., Merayo, N., Balea, A., Tarrés, Q., Delgado-Aguilar, M., Mutjé, P., Negro, C., & Blanco, Á. (2018). Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose, 25(1), 269–280. https://doi.org/10.1007/s10570-017-1552-y
  • Dick, J. G., & Malvessi, E. (2022). Strategies for reuse and recycling of water and effluents in pulp and paper industries. Research, Society and Development, 11(13), e568111335950. https://doi.org/10.33448/rsd-v11i13.35950
  • Ghosh, A., Chauhan, I., Majumdar, A., & Butola, B. S. (2017). Influence of cellulose nanofibers on the rheological behavior of silica-based shear-thickening fluid. Cellulose, 24(10), 4163–4171. https://doi.org/10.1007/s10570-017-1440-5
  • Guan, M., An, X., & Liu, H. (2019). Cellulose nanofiber (CNF) as a versatile filler for the preparation of bamboo pulp based tissue paper handsheets. Cellulose, 26(4), 2613–2624. https://doi.org/10.1007/s10570-018-2212-6
  • Havenko, S., Ohirko, M., Ryvak, P., & Kotmalova, O. (2020). Determining the factors that affect the quality of test prints at flexographic printing. Eastern-European Journal of Enterprise Technologies, 2(5 (104)), 53–63. https://doi.org/10.15587/1729-4061.2020.200360
  • He, M., Cho, B.-U., & Won, J. M. (2016). Effect of precipitated calcium carbonate—Cellulose nanofibrils composite filler on paper properties. Carbohydrate Polymers, 136, 820–825. https://doi.org/10.1016/j.carbpol.2015.09.069
  • Hsieh, C. T., Chen, J. M., Kuo, R. R., & Huang, Y. H. (2003). Formation and field-emission properties of carbon nanofibers by a simplified thermal growth. Reviews on Advanced Materials Science, 5, 459–463.
  • Hu, F., Zeng, J., Cheng, Z., Wang, X., Wang, B., Zeng, Z., & Chen, K. (2021). Cellulose nanofibrils (CNFs) produced by different mechanical methods to improve mechanical properties of recycled paper. Carbohydrate Polymers, 254, 117474. https://doi.org/10.1016/j.carbpol.2020.117474
  • Imani, M., Ghasemian, A., Dehghani-Firouzabadi, M. R., Afra, E., Gane, P. A. C., & Rojas, O. J. (2019). Nano-lignocellulose from recycled fibres in coatings from aqueous and ethanolic media: Effect of residual lignin on wetting and offset printing quality. Nordic Pulp & Paper Research Journal, 34(2), 200–210. https://doi.org/10.1515/npprj-2018-0053
  • Indarti, E., Abdul Rahman, K. H., Ibrahim, M., & Wan Daud, W. R. (2023). Enhancing strength properties of recycled paper with TEMPO-oxidized nanocellulose. BioResources, 18(1), 1508–1524. https://doi.org/10.15376/biores.18.1.1508-1524
  • Jamnicki Hanzer, S., Lozo, B., & Barušić, L. (2021). Producing direct food packaging using deinked office paper grades—Deinkability and food contact suitability evaluation. Sustainability, 13(22), 12550. https://doi.org/10.3390/su132212550
  • Jele, T. B., Lekha, P., & Sithole, B. (2022). Role of cellulose nanofibrils in improving the strength properties of paper: A review. Cellulose, 29(1), 55–81. https://doi.org/10.1007/s10570-021-04294-8
  • Jowkarderis, L., & Van De Ven, T. G. M. (2014). Intrinsic viscosity of aqueous suspensions of cellulose nanofibrils. Cellulose, 21(4), 2511–2517. https://doi.org/10.1007/s10570-014-0292-5
  • Kärenlampi, P. (1996). The effect of pulp fiber properties on the tearing work of paper. Tappi Journal, 79, 211–216.
  • Kärenlampi, P., Suur-Hamar, H., Alava, M., & Niskanen, K. (1996). The effect of pulp fiber properties on the in-plane tearing work of paper. Tappi Journal, 79, 203–209.
  • Li, A., Xu, D., Luo, L., Zhou, Y., Yan, W., Leng, X., Dai, D., Zhou, Y., Ahmad, H., Rao, J., & Fan, M. (2021). Overview of nanocellulose as additives in paper processing and paper products. Nanotechnology Reviews, 10(1), 264–281. https://doi.org/10.1515/ntrev-2021-0023
  • Li, A., Xu, D., Luo, L., Zhou, Y., Yan, W., Leng, X., Dai, D., Zhou, Y., Ahmad, H., Rao, J., & Fan, M. (2021). Overview of nanocellulose as additives in paper processing and paper products. Nanotechnology Reviews, 10(1), 264–281. https://doi.org/10.1515/ntrev-2021-0023
  • Liu, C., Du, H., Dong, L., Wang, X., Zhang, Y., Yu, G., Li, B., Mu, X., Peng, H., & Liu, H. (2017). Properties of nanocelluloses and their application as rheology modifier in paper coating. Industrial & Engineering Chemistry Research, 56(29), 8264–8273. https://doi.org/10.1021/acs.iecr.7b01804
  • Lourenço, A. F., Gamelas, J. A. F., Sarmento, P., & Ferreira, P. J. T. (2020a). A comprehensive study on nanocelluloses in papermaking: The influence of common additives on filler retention and paper strength. Cellulose, 27(9), 5297–5309. https://doi.org/10.1007/s10570-020-03105-w
  • Lourenço, A. F., Gamelas, J. A. F., Sarmento, P., & Ferreira, P. J. T. (2020b). Cellulose micro and nanofibrils as coating agent for improved printability in office papers. Cellulose, 27(10), 6001–6010. https://doi.org/10.1007/s10570-020-03184-9
  • Lourenço, A. F., Godinho, D., Gamelas, J. A. F., Sarmento, P., & Ferreira, P. J. T. (2019). Carboxymethylated cellulose nanofibrils in papermaking: Influence on filler retention and paper properties. Cellulose, 26(5), 3489–3502. https://doi.org/10.1007/s10570-019-02303-5
  • Lu, Z., Hu, W., Xie, F., & Hao, Y. (2017). Highly improved mechanical strength of aramid paper composite via a bridge of cellulose nanofiber. Cellulose, 24(7), 2827–2835. https://doi.org/10.1007/s10570-017-1315-9
  • Małachowska, E., Dubowik, M., & Przybysz, P. (2023). Morphological differences between virgin and secondary fibers. Sustainability, 15(10), 8334. https://doi.org/10.3390/su15108334
  • Mazega, A., Tarrés, Q., Aguado, R., Pèlach, M. À., Mutjé, P., Ferreira, P. J. T., & Delgado-Aguilar, M. (2022). Improving the barrier properties of paper to moisture, air, and grease with nanocellulose-based coating suspensions. Nanomaterials, 12(20), 3675. https://doi.org/10.3390/nano12203675
  • Moberg, T., Sahlin, K., Yao, K., Geng, S., Westman, G., Zhou, Q., Oksman, K., & Rigdahl, M. (2017). Rheological properties of nanocellulose suspensions: Effects of fibril/particle dimensions and surface characteristics. Cellulose, 24(6), 2499–2510. https://doi.org/10.1007/s10570-017-1283-0
  • Oguzlu, H., Danumah, C., & Boluk, Y. (2017). Colloidal behavior of aqueous cellulose nanocrystal suspensions. Current Opinion in Colloid & Interface Science, 29, 46–56. https://doi.org/10.1016/j.cocis.2017.02.002
  • Okayama, T. (2002). The effects of recycling on pulp and paper properties. Japan Tappi Journal, 56(7), 986–992. https://doi.org/10.2524/jtappij.56.986
  • Ozcan, A., Tozluoglu, A., Arman Kandirmaz, E., Tutus, A., & Fidan, H. (2021). Printability of variative nanocellulose derived papers. Cellulose, 28(8), 5019–5031. https://doi.org/10.1007/s10570-021-03861-3
  • Ozola, Z. U., Vesere, R., Kalnins, S. N., & Blumberga, D. (2019). Paper waste recycling. Circular economy aspects. Environmental and Climate Technologies, 23(3), 260–273. https://doi.org/10.2478/rtuect-2019-0094
  • Pego, M. F. F., Bianchi, M. L., & Yasumura, P. K. (2020). Nanocellulose reinforcement in paper produced from fiber blending. Wood Science and Technology, 54(6), 1587–1603. https://doi.org/10.1007/s00226-020-01226-w
  • Pego, M. F. F., Bianchi, M. L., & Yasumura, P. K. (2020). Nanocellulose reinforcement in paper produced from fiber blending. Wood Science and Technology, 54(6), 1587–1603. https://doi.org/10.1007/s00226-020-01226-w
  • Perdoch, W., Cao, Z., Florczak, P., Markiewicz, R., Jarek, M., Olejnik, K., & Mazela, B. (2022). Influence of nanocellulose structure on paper reinforcement. Molecules, 27(15), 4696. https://doi.org/10.3390/molecules27154696
  • Radić Seleš, V., Bates, I., Plazonić, I., & Majnarić, I. (2020). Analysis of optical properties of laboratory papers made from straw pulp and coated with titanium dioxide white ink. Cellulose Chemistry and Technology, 54(5–6), 473–483. https://doi.org/10.35812/CelluloseChemTechnol.2020.54.48
  • Sanchez-Salvador, J. L., Balea, A., Monte, M. C., Negro, C., Miller, M., Olson, J., & Blanco, A. (2020). Comparison of mechanical and chemical nanocellulose as additives to reinforce recycled cardboard. Scientific Reports, 10(1), 3778. https://doi.org/10.1038/s41598-020-60507-3
  • Sharma, M., Aguado, R., Murtinho, D., Valente, A. J. M., Mendes De Sousa, A. P., & Ferreira, P. J. T. (2020). A review on cationic starch and nanocellulose as paper coating components. International Journal of Biological Macromolecules, 162, 578–598. https://doi.org/10.1016/j.ijbiomac.2020.06.131
  • Sopelana, A., Auriault, C., Bansal, A., Fifer, K., Paiva, H., Maurice, C., Westin, G., Rios, J., Oleaga, A., & Cañas, A. (2021). Innovative circular economy models for the European pulp and paper industry: A reference framework for a resource recovery scenario. Sustainability, 13(18), 10285. https://doi.org/10.3390/su131810285
  • Sun, X., Wu, Q., Zhang, X., Ren, S., Lei, T., Li, W., Xu, G., & Zhang, Q. (2018). Nanocellulose films with combined cellulose nanofibers and nanocrystals: Tailored thermal, optical and mechanical properties. Cellulose, 25(2), 1103–1115. https://doi.org/10.1007/s10570-017-1627-9
  • Tajik, M., Torshizi, H. J., Resalati, H., & Hamzeh, Y. (2018). Effects of cationic starch in the presence of cellulose nanofibrils on structural, optical and strength properties of paper from soda bagasse pulp. Carbohydrate Polymers, 194, 1–8. https://doi.org/10.1016/j.carbpol.2018.04.026
  • Toivonen, M. S., Onelli, O. D., Jacucci, G., Lovikka, V., Rojas, O. J., Ikkala, O., & Vignolini, S. (2018). Anomalous‐diffusion‐assisted brightness in white cellulose nanofibril membranes. Advanced Materials, 30(16), 1704050. https://doi.org/10.1002/adma.201704050
  • Tozluoğlu, A., & Fidan, H. (2023). Effect of size press coating of cationic starch/ nanofibrillated cellulose on physical and mechanical properties of recycled papersheets. BioResources, 18(3), 5993–6012. https://doi.org/10.15376/biores.18.3.5993-6012
  • Van Ewijk, S., Stegemann, J. A., & Ekins, P. (2020). Limited climate benefits of global recycling of pulp and paper. Nature Sustainability, 4(2), 180–187. https://doi.org/10.1038/s41893-020-00624-z
  • Van Nguyen, S., & Lee, B.-K. (2021). Microfibrillated cellulose film with enhanced mechanical and water-resistant properties by glycerol and hot-pressing treatment. Cellulose, 28(9), 5693–5705. https://doi.org/10.1007/s10570-021-03894-8
  • Wanrosli, W. D., Zainuddin, Z., & Roslan, S. (2005). Upgrading of recycled paper with oil palm fiber soda pulp. Industrial Crops and Products, 21(3), 325–329. https://doi.org/10.1016/j.indcrop.2004.04.026
  • Wistara, N., Zhang, X., & Young, R. A. (1999). Properties and treatments of pulps from recycled paper. Part II. Surface properties and crystallinity of fibers and fines. Cellulose, 6(4), 325–348. https://doi.org/10.1023/A:1009255808215
  • Xu, J., Wang, P., Zhou, Z., Yuan, B., & Zhang, H. (2024). Nonlinear oscillatory rheology of aqueous suspensions of cellulose nanocrystals and nanofibrils. Journal of Rheology, 68(4), 491–508. https://doi.org/10.1122/8.0000808
  • Xu, X., Liu, F., Jiang, L., Zhu, J. Y., Haagenson, D., & Wiesenborn, D. P. (2013). Cellulose nanocrystals vs. Cellulose nanofibrils: A comparative study on their microstructures and effects as polymer reinforcing agents. ACS Applied Materials & Interfaces, 5(8), 2999–3009. https://doi.org/10.1021/am302624t
  • Xu, Y., Atrens, A., & Stokes, J. R. (2020). A review of nanocrystalline cellulose suspensions: Rheology, liquid crystal ordering and colloidal phase behaviour. Advances in Colloid and Interface Science, 275, 102076. https://doi.org/10.1016/j.cis.2019.102076
  • Yi, K., Fu, S., Yi, Z., Yang, X., & Lan, X. (2023). Nanocellulose and polysiloxane coatings for strength enhancement and oil-proof and hydrophobicity improvement of recycled pulp sheets. BioResources, 18(2), 2826–2841. https://doi.org/10.15376/biores.18.2.2826-2841
  • Zeb, H., Hussain, M. A., Ahmed, I., Akram, M. S., Haider, B., Haider, R., Babar, Z. B., Saleem, R. M., Ahsan, A., Aziz, I., & Arif, M. (2021). Study of bleaching of old newsprint recycled paper: Reproduction of newspaper material. Materials Research Express, 8(8), 085305. https://doi.org/10.1088/2053-1591/ac1ca9
  • Zeng, J., Zeng, Z., Cheng, Z., Wang, Y., Wang, X., Wang, B., & Gao, W. (2021). Cellulose nanofibrils manufactured by various methods with application as paper strength additives. Scientific Reports, 11(1), 11918. https://doi.org/10.1038/s41598-021-91420-y

SELÜLOZ NANOLİFLERİNİN (CNF) VE SELÜLOZ NANOKRİSTALLERİNİN (CNC) GERİ DÖNÜŞTÜRÜLMÜŞ GAZETE KAĞIDININ MEKANİK, OPTİK VE YÜZEY ÖZELLİKLERİNİ İYİLEŞTİRMEDE YÜKSEK PERFORMANSLI DOLGU MALZEMELERİ OLARAK KULLANIMI

Yıl 2025, Cilt: 9 Sayı: 1, 122 - 140, 30.04.2025
https://doi.org/10.32328/turkjforsci.1587158

Öz

Sürdürülebilirlik ve atık azaltma üzerine artan odak, kağıt ürünlerinin geri dönüştürülmesine olan ilgiyi önemli ölçüde artırmıştır. Bu çalışma, geri dönüştürülmüş gazete kağıdı üretiminde iki tür nanoselülozun (CNF ve CNC) dolgu malzemesi olarak kullanımını incelemektedir. Amaç, bu nanoselülozların geri dönüştürülmüş gazete kağıdının (ONP) mekanik, optik ve yüzey özellikleri üzerindeki etkilerini değerlendirmektir. Malzemenin dayanıklılığını belirlemek için çekme mukavemeti, patlama mukavemeti ve yırtılma direnci gibi mekanik özellikler ölçülmüştür. Geri dönüştürülmüş kağıdın estetik kalitesini anlamak için parlaklık, beyazlık ve sarılık gibi optik özellikler değerlendirilmiştir. Baskı kalitesi açısından kritik olan yüzey kalitesini belirlemek amacıyla yüzey pürüzlülüğü değerleri (Ra, Rz, Rq) analiz edilmiştir. Sonuçlar, CNF’nin çekme ve yırtılma mukavemetini önemli ölçüde artırdığını ve sarılığı azaltarak kağıdı görsel olarak daha çekici hale getirdiğini göstermiştir. Diğer yandan CNC, patlama mukavemetinde belirgin bir iyileşme sağlarken diğer özellikler üzerinde daha az etkili olmuştur. Bu çalışma, özellikle CNF’nin, geri dönüştürülmüş gazete kağıdının belirli mekanik ve optik özelliklerini iyileştirmede umut verici bir katkı maddesi olduğunu ortaya koymaktadır ve bu tür kağıtların çeşitli uygulamalar için daha uygun hale getirilmesini sağlamaktadır.

Kaynakça

  • Abushammala, H., Masood, M. A., Ghulam, S. T., & Mao, J. (2023). On the conversion of paper waste and rejects into high-value materials and energy. Sustainability, 15(8), 6915. https://doi.org/10.3390/su15086915
  • Ataeefard, M. (2014). Influence of paper surface characteristics on digital printing quality. Surface Engineering, 30(7), 529–534. https://doi.org/10.1179/1743294414Y.0000000264
  • Aydemir, C., Kašikovic, N., Horvath, C., & Durdevic, S. (2021). Effect of paper surface properties on ink color change, print gloss and light fastness resistance. Cellulose Chemistry and Technology, 55(1–2), 133–139. https://doi.org/10.35812/CelluloseChemTechnol.2021.55.14
  • Bai, L., Liu, Y., Ding, A., Ren, N., Li, G., & Liang, H. (2019). Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs). Chemosphere, 217, 76–84. https://doi.org/10.1016/j.chemosphere.2018.10.219
  • Balea, A., Fuente, E., Monte, M. C., Merayo, N., Campano, C., Negro, C., & Blanco, A. (2020). Industrial application of nanocelluloses in papermaking: A review of challenges, technical solutions, and market perspectives. Molecules, 25(3), 526. https://doi.org/10.3390/molecules25030526
  • Balea, A., Merayo, N., Fuente, E., Negro, C., Delgado-Aguilar, M., Mutje, P., & Blanco, A. (2018). Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper. Cellulose, 25(2), 1339–1351. https://doi.org/10.1007/s10570-017-1618-x
  • Bárta, J., Hájková, K., Sikora, A., Jurczyková, T., Popelková, D., & Kalous, P. (2023). Effect of a nanocellulose addition on the mechanical properties of paper. Polymers, 16(1), 73. https://doi.org/10.3390/polym16010073
  • Brancato, A., Walsh, F. L., Sabo, R., & Banerjee, S. (2007). Effect of Recycling on the Properties of Paper Surfaces. Industrial & Engineering Chemistry Research, 46(26), 9103–9106. https://doi.org/10.1021/ie070826a
  • Campano, C., Merayo, N., Balea, A., Tarrés, Q., Delgado-Aguilar, M., Mutjé, P., Negro, C., & Blanco, Á. (2018). Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose, 25(1), 269–280. https://doi.org/10.1007/s10570-017-1552-y
  • Dick, J. G., & Malvessi, E. (2022). Strategies for reuse and recycling of water and effluents in pulp and paper industries. Research, Society and Development, 11(13), e568111335950. https://doi.org/10.33448/rsd-v11i13.35950
  • Ghosh, A., Chauhan, I., Majumdar, A., & Butola, B. S. (2017). Influence of cellulose nanofibers on the rheological behavior of silica-based shear-thickening fluid. Cellulose, 24(10), 4163–4171. https://doi.org/10.1007/s10570-017-1440-5
  • Guan, M., An, X., & Liu, H. (2019). Cellulose nanofiber (CNF) as a versatile filler for the preparation of bamboo pulp based tissue paper handsheets. Cellulose, 26(4), 2613–2624. https://doi.org/10.1007/s10570-018-2212-6
  • Havenko, S., Ohirko, M., Ryvak, P., & Kotmalova, O. (2020). Determining the factors that affect the quality of test prints at flexographic printing. Eastern-European Journal of Enterprise Technologies, 2(5 (104)), 53–63. https://doi.org/10.15587/1729-4061.2020.200360
  • He, M., Cho, B.-U., & Won, J. M. (2016). Effect of precipitated calcium carbonate—Cellulose nanofibrils composite filler on paper properties. Carbohydrate Polymers, 136, 820–825. https://doi.org/10.1016/j.carbpol.2015.09.069
  • Hsieh, C. T., Chen, J. M., Kuo, R. R., & Huang, Y. H. (2003). Formation and field-emission properties of carbon nanofibers by a simplified thermal growth. Reviews on Advanced Materials Science, 5, 459–463.
  • Hu, F., Zeng, J., Cheng, Z., Wang, X., Wang, B., Zeng, Z., & Chen, K. (2021). Cellulose nanofibrils (CNFs) produced by different mechanical methods to improve mechanical properties of recycled paper. Carbohydrate Polymers, 254, 117474. https://doi.org/10.1016/j.carbpol.2020.117474
  • Imani, M., Ghasemian, A., Dehghani-Firouzabadi, M. R., Afra, E., Gane, P. A. C., & Rojas, O. J. (2019). Nano-lignocellulose from recycled fibres in coatings from aqueous and ethanolic media: Effect of residual lignin on wetting and offset printing quality. Nordic Pulp & Paper Research Journal, 34(2), 200–210. https://doi.org/10.1515/npprj-2018-0053
  • Indarti, E., Abdul Rahman, K. H., Ibrahim, M., & Wan Daud, W. R. (2023). Enhancing strength properties of recycled paper with TEMPO-oxidized nanocellulose. BioResources, 18(1), 1508–1524. https://doi.org/10.15376/biores.18.1.1508-1524
  • Jamnicki Hanzer, S., Lozo, B., & Barušić, L. (2021). Producing direct food packaging using deinked office paper grades—Deinkability and food contact suitability evaluation. Sustainability, 13(22), 12550. https://doi.org/10.3390/su132212550
  • Jele, T. B., Lekha, P., & Sithole, B. (2022). Role of cellulose nanofibrils in improving the strength properties of paper: A review. Cellulose, 29(1), 55–81. https://doi.org/10.1007/s10570-021-04294-8
  • Jowkarderis, L., & Van De Ven, T. G. M. (2014). Intrinsic viscosity of aqueous suspensions of cellulose nanofibrils. Cellulose, 21(4), 2511–2517. https://doi.org/10.1007/s10570-014-0292-5
  • Kärenlampi, P. (1996). The effect of pulp fiber properties on the tearing work of paper. Tappi Journal, 79, 211–216.
  • Kärenlampi, P., Suur-Hamar, H., Alava, M., & Niskanen, K. (1996). The effect of pulp fiber properties on the in-plane tearing work of paper. Tappi Journal, 79, 203–209.
  • Li, A., Xu, D., Luo, L., Zhou, Y., Yan, W., Leng, X., Dai, D., Zhou, Y., Ahmad, H., Rao, J., & Fan, M. (2021). Overview of nanocellulose as additives in paper processing and paper products. Nanotechnology Reviews, 10(1), 264–281. https://doi.org/10.1515/ntrev-2021-0023
  • Li, A., Xu, D., Luo, L., Zhou, Y., Yan, W., Leng, X., Dai, D., Zhou, Y., Ahmad, H., Rao, J., & Fan, M. (2021). Overview of nanocellulose as additives in paper processing and paper products. Nanotechnology Reviews, 10(1), 264–281. https://doi.org/10.1515/ntrev-2021-0023
  • Liu, C., Du, H., Dong, L., Wang, X., Zhang, Y., Yu, G., Li, B., Mu, X., Peng, H., & Liu, H. (2017). Properties of nanocelluloses and their application as rheology modifier in paper coating. Industrial & Engineering Chemistry Research, 56(29), 8264–8273. https://doi.org/10.1021/acs.iecr.7b01804
  • Lourenço, A. F., Gamelas, J. A. F., Sarmento, P., & Ferreira, P. J. T. (2020a). A comprehensive study on nanocelluloses in papermaking: The influence of common additives on filler retention and paper strength. Cellulose, 27(9), 5297–5309. https://doi.org/10.1007/s10570-020-03105-w
  • Lourenço, A. F., Gamelas, J. A. F., Sarmento, P., & Ferreira, P. J. T. (2020b). Cellulose micro and nanofibrils as coating agent for improved printability in office papers. Cellulose, 27(10), 6001–6010. https://doi.org/10.1007/s10570-020-03184-9
  • Lourenço, A. F., Godinho, D., Gamelas, J. A. F., Sarmento, P., & Ferreira, P. J. T. (2019). Carboxymethylated cellulose nanofibrils in papermaking: Influence on filler retention and paper properties. Cellulose, 26(5), 3489–3502. https://doi.org/10.1007/s10570-019-02303-5
  • Lu, Z., Hu, W., Xie, F., & Hao, Y. (2017). Highly improved mechanical strength of aramid paper composite via a bridge of cellulose nanofiber. Cellulose, 24(7), 2827–2835. https://doi.org/10.1007/s10570-017-1315-9
  • Małachowska, E., Dubowik, M., & Przybysz, P. (2023). Morphological differences between virgin and secondary fibers. Sustainability, 15(10), 8334. https://doi.org/10.3390/su15108334
  • Mazega, A., Tarrés, Q., Aguado, R., Pèlach, M. À., Mutjé, P., Ferreira, P. J. T., & Delgado-Aguilar, M. (2022). Improving the barrier properties of paper to moisture, air, and grease with nanocellulose-based coating suspensions. Nanomaterials, 12(20), 3675. https://doi.org/10.3390/nano12203675
  • Moberg, T., Sahlin, K., Yao, K., Geng, S., Westman, G., Zhou, Q., Oksman, K., & Rigdahl, M. (2017). Rheological properties of nanocellulose suspensions: Effects of fibril/particle dimensions and surface characteristics. Cellulose, 24(6), 2499–2510. https://doi.org/10.1007/s10570-017-1283-0
  • Oguzlu, H., Danumah, C., & Boluk, Y. (2017). Colloidal behavior of aqueous cellulose nanocrystal suspensions. Current Opinion in Colloid & Interface Science, 29, 46–56. https://doi.org/10.1016/j.cocis.2017.02.002
  • Okayama, T. (2002). The effects of recycling on pulp and paper properties. Japan Tappi Journal, 56(7), 986–992. https://doi.org/10.2524/jtappij.56.986
  • Ozcan, A., Tozluoglu, A., Arman Kandirmaz, E., Tutus, A., & Fidan, H. (2021). Printability of variative nanocellulose derived papers. Cellulose, 28(8), 5019–5031. https://doi.org/10.1007/s10570-021-03861-3
  • Ozola, Z. U., Vesere, R., Kalnins, S. N., & Blumberga, D. (2019). Paper waste recycling. Circular economy aspects. Environmental and Climate Technologies, 23(3), 260–273. https://doi.org/10.2478/rtuect-2019-0094
  • Pego, M. F. F., Bianchi, M. L., & Yasumura, P. K. (2020). Nanocellulose reinforcement in paper produced from fiber blending. Wood Science and Technology, 54(6), 1587–1603. https://doi.org/10.1007/s00226-020-01226-w
  • Pego, M. F. F., Bianchi, M. L., & Yasumura, P. K. (2020). Nanocellulose reinforcement in paper produced from fiber blending. Wood Science and Technology, 54(6), 1587–1603. https://doi.org/10.1007/s00226-020-01226-w
  • Perdoch, W., Cao, Z., Florczak, P., Markiewicz, R., Jarek, M., Olejnik, K., & Mazela, B. (2022). Influence of nanocellulose structure on paper reinforcement. Molecules, 27(15), 4696. https://doi.org/10.3390/molecules27154696
  • Radić Seleš, V., Bates, I., Plazonić, I., & Majnarić, I. (2020). Analysis of optical properties of laboratory papers made from straw pulp and coated with titanium dioxide white ink. Cellulose Chemistry and Technology, 54(5–6), 473–483. https://doi.org/10.35812/CelluloseChemTechnol.2020.54.48
  • Sanchez-Salvador, J. L., Balea, A., Monte, M. C., Negro, C., Miller, M., Olson, J., & Blanco, A. (2020). Comparison of mechanical and chemical nanocellulose as additives to reinforce recycled cardboard. Scientific Reports, 10(1), 3778. https://doi.org/10.1038/s41598-020-60507-3
  • Sharma, M., Aguado, R., Murtinho, D., Valente, A. J. M., Mendes De Sousa, A. P., & Ferreira, P. J. T. (2020). A review on cationic starch and nanocellulose as paper coating components. International Journal of Biological Macromolecules, 162, 578–598. https://doi.org/10.1016/j.ijbiomac.2020.06.131
  • Sopelana, A., Auriault, C., Bansal, A., Fifer, K., Paiva, H., Maurice, C., Westin, G., Rios, J., Oleaga, A., & Cañas, A. (2021). Innovative circular economy models for the European pulp and paper industry: A reference framework for a resource recovery scenario. Sustainability, 13(18), 10285. https://doi.org/10.3390/su131810285
  • Sun, X., Wu, Q., Zhang, X., Ren, S., Lei, T., Li, W., Xu, G., & Zhang, Q. (2018). Nanocellulose films with combined cellulose nanofibers and nanocrystals: Tailored thermal, optical and mechanical properties. Cellulose, 25(2), 1103–1115. https://doi.org/10.1007/s10570-017-1627-9
  • Tajik, M., Torshizi, H. J., Resalati, H., & Hamzeh, Y. (2018). Effects of cationic starch in the presence of cellulose nanofibrils on structural, optical and strength properties of paper from soda bagasse pulp. Carbohydrate Polymers, 194, 1–8. https://doi.org/10.1016/j.carbpol.2018.04.026
  • Toivonen, M. S., Onelli, O. D., Jacucci, G., Lovikka, V., Rojas, O. J., Ikkala, O., & Vignolini, S. (2018). Anomalous‐diffusion‐assisted brightness in white cellulose nanofibril membranes. Advanced Materials, 30(16), 1704050. https://doi.org/10.1002/adma.201704050
  • Tozluoğlu, A., & Fidan, H. (2023). Effect of size press coating of cationic starch/ nanofibrillated cellulose on physical and mechanical properties of recycled papersheets. BioResources, 18(3), 5993–6012. https://doi.org/10.15376/biores.18.3.5993-6012
  • Van Ewijk, S., Stegemann, J. A., & Ekins, P. (2020). Limited climate benefits of global recycling of pulp and paper. Nature Sustainability, 4(2), 180–187. https://doi.org/10.1038/s41893-020-00624-z
  • Van Nguyen, S., & Lee, B.-K. (2021). Microfibrillated cellulose film with enhanced mechanical and water-resistant properties by glycerol and hot-pressing treatment. Cellulose, 28(9), 5693–5705. https://doi.org/10.1007/s10570-021-03894-8
  • Wanrosli, W. D., Zainuddin, Z., & Roslan, S. (2005). Upgrading of recycled paper with oil palm fiber soda pulp. Industrial Crops and Products, 21(3), 325–329. https://doi.org/10.1016/j.indcrop.2004.04.026
  • Wistara, N., Zhang, X., & Young, R. A. (1999). Properties and treatments of pulps from recycled paper. Part II. Surface properties and crystallinity of fibers and fines. Cellulose, 6(4), 325–348. https://doi.org/10.1023/A:1009255808215
  • Xu, J., Wang, P., Zhou, Z., Yuan, B., & Zhang, H. (2024). Nonlinear oscillatory rheology of aqueous suspensions of cellulose nanocrystals and nanofibrils. Journal of Rheology, 68(4), 491–508. https://doi.org/10.1122/8.0000808
  • Xu, X., Liu, F., Jiang, L., Zhu, J. Y., Haagenson, D., & Wiesenborn, D. P. (2013). Cellulose nanocrystals vs. Cellulose nanofibrils: A comparative study on their microstructures and effects as polymer reinforcing agents. ACS Applied Materials & Interfaces, 5(8), 2999–3009. https://doi.org/10.1021/am302624t
  • Xu, Y., Atrens, A., & Stokes, J. R. (2020). A review of nanocrystalline cellulose suspensions: Rheology, liquid crystal ordering and colloidal phase behaviour. Advances in Colloid and Interface Science, 275, 102076. https://doi.org/10.1016/j.cis.2019.102076
  • Yi, K., Fu, S., Yi, Z., Yang, X., & Lan, X. (2023). Nanocellulose and polysiloxane coatings for strength enhancement and oil-proof and hydrophobicity improvement of recycled pulp sheets. BioResources, 18(2), 2826–2841. https://doi.org/10.15376/biores.18.2.2826-2841
  • Zeb, H., Hussain, M. A., Ahmed, I., Akram, M. S., Haider, B., Haider, R., Babar, Z. B., Saleem, R. M., Ahsan, A., Aziz, I., & Arif, M. (2021). Study of bleaching of old newsprint recycled paper: Reproduction of newspaper material. Materials Research Express, 8(8), 085305. https://doi.org/10.1088/2053-1591/ac1ca9
  • Zeng, J., Zeng, Z., Cheng, Z., Wang, Y., Wang, X., Wang, B., & Gao, W. (2021). Cellulose nanofibrils manufactured by various methods with application as paper strength additives. Scientific Reports, 11(1), 11918. https://doi.org/10.1038/s41598-021-91420-y
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kereste, Hamur ve Kağıt
Bölüm Araştırma Makalesi
Yazarlar

Mustafa Çiçekler 0000-0001-5793-2827

Ahmet Tutuş 0000-0003-2922-4916

Yayımlanma Tarihi 30 Nisan 2025
Gönderilme Tarihi 18 Kasım 2024
Kabul Tarihi 26 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 1

Kaynak Göster

APA Çiçekler, M., & Tutuş, A. (2025). CELLULOSE NANOFIBERS (CNF) AND CELLULOSE NANOCRYSTALS (CNC) AS HIGH-PERFORMANCE FILLERS IMPROVING THE MECHANICAL, OPTICAL, AND SURFACE PROPERTIES OF RECYCLED NEWSPAPER. Turkish Journal of Forest Science, 9(1), 122-140. https://doi.org/10.32328/turkjforsci.1587158
AMA Çiçekler M, Tutuş A. CELLULOSE NANOFIBERS (CNF) AND CELLULOSE NANOCRYSTALS (CNC) AS HIGH-PERFORMANCE FILLERS IMPROVING THE MECHANICAL, OPTICAL, AND SURFACE PROPERTIES OF RECYCLED NEWSPAPER. Turk J For Sci. Nisan 2025;9(1):122-140. doi:10.32328/turkjforsci.1587158
Chicago Çiçekler, Mustafa, ve Ahmet Tutuş. “CELLULOSE NANOFIBERS (CNF) AND CELLULOSE NANOCRYSTALS (CNC) AS HIGH-PERFORMANCE FILLERS IMPROVING THE MECHANICAL, OPTICAL, AND SURFACE PROPERTIES OF RECYCLED NEWSPAPER”. Turkish Journal of Forest Science 9, sy. 1 (Nisan 2025): 122-40. https://doi.org/10.32328/turkjforsci.1587158.
EndNote Çiçekler M, Tutuş A (01 Nisan 2025) CELLULOSE NANOFIBERS (CNF) AND CELLULOSE NANOCRYSTALS (CNC) AS HIGH-PERFORMANCE FILLERS IMPROVING THE MECHANICAL, OPTICAL, AND SURFACE PROPERTIES OF RECYCLED NEWSPAPER. Turkish Journal of Forest Science 9 1 122–140.
IEEE M. Çiçekler ve A. Tutuş, “CELLULOSE NANOFIBERS (CNF) AND CELLULOSE NANOCRYSTALS (CNC) AS HIGH-PERFORMANCE FILLERS IMPROVING THE MECHANICAL, OPTICAL, AND SURFACE PROPERTIES OF RECYCLED NEWSPAPER”, Turk J For Sci, c. 9, sy. 1, ss. 122–140, 2025, doi: 10.32328/turkjforsci.1587158.
ISNAD Çiçekler, Mustafa - Tutuş, Ahmet. “CELLULOSE NANOFIBERS (CNF) AND CELLULOSE NANOCRYSTALS (CNC) AS HIGH-PERFORMANCE FILLERS IMPROVING THE MECHANICAL, OPTICAL, AND SURFACE PROPERTIES OF RECYCLED NEWSPAPER”. Turkish Journal of Forest Science 9/1 (Nisan 2025), 122-140. https://doi.org/10.32328/turkjforsci.1587158.
JAMA Çiçekler M, Tutuş A. CELLULOSE NANOFIBERS (CNF) AND CELLULOSE NANOCRYSTALS (CNC) AS HIGH-PERFORMANCE FILLERS IMPROVING THE MECHANICAL, OPTICAL, AND SURFACE PROPERTIES OF RECYCLED NEWSPAPER. Turk J For Sci. 2025;9:122–140.
MLA Çiçekler, Mustafa ve Ahmet Tutuş. “CELLULOSE NANOFIBERS (CNF) AND CELLULOSE NANOCRYSTALS (CNC) AS HIGH-PERFORMANCE FILLERS IMPROVING THE MECHANICAL, OPTICAL, AND SURFACE PROPERTIES OF RECYCLED NEWSPAPER”. Turkish Journal of Forest Science, c. 9, sy. 1, 2025, ss. 122-40, doi:10.32328/turkjforsci.1587158.
Vancouver Çiçekler M, Tutuş A. CELLULOSE NANOFIBERS (CNF) AND CELLULOSE NANOCRYSTALS (CNC) AS HIGH-PERFORMANCE FILLERS IMPROVING THE MECHANICAL, OPTICAL, AND SURFACE PROPERTIES OF RECYCLED NEWSPAPER. Turk J For Sci. 2025;9(1):122-40.