Araştırma Makalesi
BibTex RIS Kaynak Göster

On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction

Yıl 2024, Cilt: 7 Sayı: 4, 163 - 169, 09.12.2024
https://doi.org/10.32323/ujma.1466419

Öz

The process of creating univalent harmonic mappings which are not analytic is not simple or straightforward. One efficient method for constructing desired univalent harmonic maps is by taking the linear combination of two suitable harmonic maps. In this study, we take into account two harmonic, univalent, and convex in the horizontal direction mappings, which are horizontal shears of $\Psi_{m}(z)=\frac{1}{2i\sin \gamma_{m}}\log \left( \frac{ 1+ze^{i\gamma_{m}}}{%
1+ze^{-^{i\gamma_{m}}}}\right),$ and have dilatations $\omega _{1}(z)=z,$
$\omega _{2}(z)=\frac{z+b}{1+bz},$ $b\in (-1,1).$ We obtain sufficient conditions for the linear combination of these two harmonic mappings to be univalent and convex in the
horizontal direction. In addition, we provide an example to illustrate the
result graphically with the help of Maple.

Kaynakça

  • [1] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., 42 (1936), 689-692.
  • [2] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Math., 9 (1984), 3-25.
  • [3] P. Duren, Harmonic Mapping In The Plane, Cambridge University Press, Cambridge, 2004.
  • [4] S. Çakmak, E. Yaşar, S. Yalçın, Convolutions of harmonic mappings convex in the horizontal direction, J. Funct. Spaces, 2021 (2021), Article ID 2949573, 9 pages, doi:10.1155/2021/2949573.
  • [5] M. Dorff, J. Rolf, (Eds.), Anamorphosis, Mapping Problems, and Harmonic Univalent Functions, in Explorations in Complex Analysis, Math. Assoc. of America, Inc., Washington DC, 2012.
  • [6] B. Long, M. Dorff, Linear combinations of a class of harmonic univalent mappings, Filomat, 32(9) (2018), 3111-3121.
  • [7] R. Kumar, S. Gupta, S. Singh, Linear combinations of univalent harmonic mappings convex in the direction of the imaginary axis, Bull. Malays. Math. Sci. Soc., 39(2) (2016), 751-763.
  • [8] Z. G. Wang, Z. H. Liu, Y. C. Li, On the linear combinations of harmonic univalent mappings, J. Math. Anal. Appl., 400(2) (2013), 452-459.
  • [9] M. Demirçay, Linear combinations of harmonic univalent functions, Master’s Thesis, Bursa Uludag University, 2023.
  • [10] M. Demirçay, E. Yaşar, Linear Combinations of Harmonic Univalent Mappings Convex In The Horizontal Direction, 1st International Conference on Engineering and Applied Natural Sciences, Konya, T¨urkiye, (2022), 1595.
  • [11] Q. I. Rahman, G. Schmeisser, Analytic Theory Of Polynomials, London Mathematical Society Monographs New Series, Vol. 26, Oxford University Press, Oxford, 2002.
  • [12] A. Aleman, A. Constantin, Harmonic maps and ideal fluid flows, Arch. Ration. Mech. Anal., 204 (2012), 479–513.

On Linear Combinations Of Harmonic Mappings Convex In The Horizontal Direction

Yıl 2024, Cilt: 7 Sayı: 4, 163 - 169, 09.12.2024
https://doi.org/10.32323/ujma.1466419

Öz

The process of creating univalent harmonic mappings which are not analytic is not simple or straightforward. One efficient method for constructing desired univalent harmonic maps is by taking the linear combination of two suitable harmonic maps. In this study, we take into account two harmonic, univalent, and convex in the horizontal direction mappings, which are horizontal shears of $\Psi_{m}(z)=\frac{1}{2i\sin \gamma_{m}}\log \left( \frac{ 1+ze^{i\gamma_{m}}}{%
1+ze^{-^{i\gamma_{m}}}}\right),$ and have dilatations $\omega _{1}(z)=z,$
$\omega _{2}(z)=\frac{z+b}{1+bz},$ $b\in (-1,1).$ We obtain sufficient conditions for the linear combination of these two harmonic mappings to be univalent and convex in the
horizontal direction. In addition, we provide an example to illustrate the
result graphically with the help of Maple.

Kaynakça

  • [1] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., 42 (1936), 689-692.
  • [2] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Math., 9 (1984), 3-25.
  • [3] P. Duren, Harmonic Mapping In The Plane, Cambridge University Press, Cambridge, 2004.
  • [4] S. Çakmak, E. Yaşar, S. Yalçın, Convolutions of harmonic mappings convex in the horizontal direction, J. Funct. Spaces, 2021 (2021), Article ID 2949573, 9 pages, doi:10.1155/2021/2949573.
  • [5] M. Dorff, J. Rolf, (Eds.), Anamorphosis, Mapping Problems, and Harmonic Univalent Functions, in Explorations in Complex Analysis, Math. Assoc. of America, Inc., Washington DC, 2012.
  • [6] B. Long, M. Dorff, Linear combinations of a class of harmonic univalent mappings, Filomat, 32(9) (2018), 3111-3121.
  • [7] R. Kumar, S. Gupta, S. Singh, Linear combinations of univalent harmonic mappings convex in the direction of the imaginary axis, Bull. Malays. Math. Sci. Soc., 39(2) (2016), 751-763.
  • [8] Z. G. Wang, Z. H. Liu, Y. C. Li, On the linear combinations of harmonic univalent mappings, J. Math. Anal. Appl., 400(2) (2013), 452-459.
  • [9] M. Demirçay, Linear combinations of harmonic univalent functions, Master’s Thesis, Bursa Uludag University, 2023.
  • [10] M. Demirçay, E. Yaşar, Linear Combinations of Harmonic Univalent Mappings Convex In The Horizontal Direction, 1st International Conference on Engineering and Applied Natural Sciences, Konya, T¨urkiye, (2022), 1595.
  • [11] Q. I. Rahman, G. Schmeisser, Analytic Theory Of Polynomials, London Mathematical Society Monographs New Series, Vol. 26, Oxford University Press, Oxford, 2002.
  • [12] A. Aleman, A. Constantin, Harmonic maps and ideal fluid flows, Arch. Ration. Mech. Anal., 204 (2012), 479–513.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Temel Matematik (Diğer)
Bölüm Makaleler
Yazarlar

Elif Yaşar 0000-0003-0176-4961

Erken Görünüm Tarihi 28 Ekim 2024
Yayımlanma Tarihi 9 Aralık 2024
Gönderilme Tarihi 7 Nisan 2024
Kabul Tarihi 13 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 4

Kaynak Göster

APA Yaşar, E. (2024). On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction. Universal Journal of Mathematics and Applications, 7(4), 163-169. https://doi.org/10.32323/ujma.1466419
AMA Yaşar E. On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction. Univ. J. Math. Appl. Aralık 2024;7(4):163-169. doi:10.32323/ujma.1466419
Chicago Yaşar, Elif. “On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction”. Universal Journal of Mathematics and Applications 7, sy. 4 (Aralık 2024): 163-69. https://doi.org/10.32323/ujma.1466419.
EndNote Yaşar E (01 Aralık 2024) On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction. Universal Journal of Mathematics and Applications 7 4 163–169.
IEEE E. Yaşar, “On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction”, Univ. J. Math. Appl., c. 7, sy. 4, ss. 163–169, 2024, doi: 10.32323/ujma.1466419.
ISNAD Yaşar, Elif. “On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction”. Universal Journal of Mathematics and Applications 7/4 (Aralık 2024), 163-169. https://doi.org/10.32323/ujma.1466419.
JAMA Yaşar E. On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction. Univ. J. Math. Appl. 2024;7:163–169.
MLA Yaşar, Elif. “On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction”. Universal Journal of Mathematics and Applications, c. 7, sy. 4, 2024, ss. 163-9, doi:10.32323/ujma.1466419.
Vancouver Yaşar E. On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction. Univ. J. Math. Appl. 2024;7(4):163-9.

 23181

Universal Journal of Mathematics and Applications 

29207               

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.