Araştırma Makalesi
BibTex RIS Kaynak Göster

A Study on the k-Mersenne and k-Mersenne-Lucas Sequences

Yıl 2025, Cilt: 8 Sayı: 1, 1 - 7, 25.03.2025
https://doi.org/10.32323/ujma.1566270

Öz

In this study, we examine an application of $k-$Mersenne and $k-$Mersenne-Lucas sequences. We present the Catalan transforms of these sequences and give the properties of these Catalan transforms. Catalan transforms of $k-$Mersenne and $k-$Mersenne-Lucas sequences have terms according to different values of $k$, and some of them are associated with the sequences in OEIS. We obtain the generating functions of the Catalan transforms of $k-$Mersenne and $k-$Mersenne-Lucas sequences. Moreover, we apply the Hankel transform to the Catalan transforms of these sequences. Finally, the determinants of the created matrices are calculated by applying the Hankel transform to the terms of the Catalan transforms of these sequences.

Kaynakça

  • [1] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2019.
  • [2] S. Falcon, A. Plaza, On the Fibonacci k-Numbers, Chaos Solutions Fractals, 32(5) (2007), 1615-1624.
  • [3] S. Falcon, Catalan transform of the k-Fibonacci sequence, Communications of the Korean Mathematical Society, 28(4) (2013), 827–832.
  • [4] Y. Soykan, On generalized p-Mersenne numbers, Earthline Journal of Mathematical Sciences, 8(1) (2022), 83-120.
  • [5] R. Frontczak, T. P. Goy, Mersenne-Horadam identities using generating functions, Carpathian Math. Publ., 12(1) (2020), 34-45.
  • [6] M. Uysal, M. Kumari, B. Kuloğlu, K. Prasad, E. Özkan, On the hyperbolic k-Mersenne and k-Mersenne-Lucas octonions, Kragujevac J. Math.,49(5) (2025), 765-779.
  • [7] D. Tasci, On Gaussian Mersenne numbers, J. Sci. Arts, 21(4) (2021), 1021-1028.
  • [8] P. Barry, A Catalan transform and related transformations on integer sequences, J. Integer Seq. J., 8(4) (2005), 1-24.
  • [9] M. Chelgham, A. Boussayoud, On the k-Mersenne-Lucas numbers, Notes Number Theory Discrete Math., 27(1) (2021), 7-13.
  • [10] M. Kumari, K, Prasad, J, Tanti, On the generalization of Mersenne and Gaussian Mersenne polynomials, J. Anal., 32(3) (2024), 931-947.
  • [11] Y. Soykan, A study on generalized Mersenne numbers, Journal of Progressive Research in Mathematics, 18(3) (2021), 90-112.
  • [12] S. Demiriz, S. Erdem, Mersenne matrix operator and its application in p-summable sequence space, Commun. Adv. Math. Sci., 7(1)(2024), 42-55.
  • [13] E. Özkan, M. Uysal, Mersenne-Lucas hybrid numbers, Math. Montisnigri, 52(2021), 17-29.
  • [14] M. Kumari, K. Prasad, R. Mohanta, Algebra of quaternions and octonions involving higher order Mersenne numbers, Proc. Indian Nat. Sci. Acad., (2024), 1-10.
  • [15] M. Kumari, J. Tanti, K. Prasad, On some new families of k-Mersenne and generalized k-Gaussian Mersenne numbers and their polynomials, (2021), arXiv preprint arXiv:2111.09592.
  • [16] P. Catarino, H. Campos, H., P. Vasco, On the Mersenne sequence, Ann. Math. Inform., 46 (2016), 37-53.
  • [17] N. Saba, A. Boussayoud, K. V. V. Kanuri, Mersenne Lucas numbers and complete homogeneous symmetric functions, J. Math. Comput. Sci., 24(2) (2021), 127- 139.
  • [18] A. Patra, M. K. Kaabar, Catalan transform of k-Balancing sequences, Int. J. Math. Math. Sci., 2021(1) 2021, 9987314.
  • [19] S. Kapoor, P. Kumar, Catalan Transformation of (s; t) Padovan Sequences, Asian Journal of Pure and Applied Mathematics, 5(1) (2023), 170-178.
  • [20] P. J. Larcombe, P. D. Wilson, On the generating function of the Catalan sequence: A historical perspective, Congr. Numer., 149 (2001), 97-108.
  • [21] J. W. Layman, The Hankel transform and some of its properties, J. Integer Seq., 4(1) 2001, 1-11.
  • [22] P. M. Rajkovi´c, M. D. Petkovi´c, P. Barry, The Hankel transform of the sum of consecutive generalized Catalan numbers, Integral Transforms Spec. Funct., 18(4) (2007), 285-296.
  • [23] K. Parmar, V. R. Gorty, Quaternion Hankel Transform and its Generalization, Sahand Commun. Math. Anal., 21(1) (2024), 67-81.
  • [24] E. Özkan, M. Uysal, B. Kulogğu, Catalan transform of the incomplete Jacobsthal numbers and incomplete generalized Jacobsthal polynomials, Asian-Eur. J. Math., 15(6) (2022), 2250119.
Yıl 2025, Cilt: 8 Sayı: 1, 1 - 7, 25.03.2025
https://doi.org/10.32323/ujma.1566270

Öz

Kaynakça

  • [1] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2019.
  • [2] S. Falcon, A. Plaza, On the Fibonacci k-Numbers, Chaos Solutions Fractals, 32(5) (2007), 1615-1624.
  • [3] S. Falcon, Catalan transform of the k-Fibonacci sequence, Communications of the Korean Mathematical Society, 28(4) (2013), 827–832.
  • [4] Y. Soykan, On generalized p-Mersenne numbers, Earthline Journal of Mathematical Sciences, 8(1) (2022), 83-120.
  • [5] R. Frontczak, T. P. Goy, Mersenne-Horadam identities using generating functions, Carpathian Math. Publ., 12(1) (2020), 34-45.
  • [6] M. Uysal, M. Kumari, B. Kuloğlu, K. Prasad, E. Özkan, On the hyperbolic k-Mersenne and k-Mersenne-Lucas octonions, Kragujevac J. Math.,49(5) (2025), 765-779.
  • [7] D. Tasci, On Gaussian Mersenne numbers, J. Sci. Arts, 21(4) (2021), 1021-1028.
  • [8] P. Barry, A Catalan transform and related transformations on integer sequences, J. Integer Seq. J., 8(4) (2005), 1-24.
  • [9] M. Chelgham, A. Boussayoud, On the k-Mersenne-Lucas numbers, Notes Number Theory Discrete Math., 27(1) (2021), 7-13.
  • [10] M. Kumari, K, Prasad, J, Tanti, On the generalization of Mersenne and Gaussian Mersenne polynomials, J. Anal., 32(3) (2024), 931-947.
  • [11] Y. Soykan, A study on generalized Mersenne numbers, Journal of Progressive Research in Mathematics, 18(3) (2021), 90-112.
  • [12] S. Demiriz, S. Erdem, Mersenne matrix operator and its application in p-summable sequence space, Commun. Adv. Math. Sci., 7(1)(2024), 42-55.
  • [13] E. Özkan, M. Uysal, Mersenne-Lucas hybrid numbers, Math. Montisnigri, 52(2021), 17-29.
  • [14] M. Kumari, K. Prasad, R. Mohanta, Algebra of quaternions and octonions involving higher order Mersenne numbers, Proc. Indian Nat. Sci. Acad., (2024), 1-10.
  • [15] M. Kumari, J. Tanti, K. Prasad, On some new families of k-Mersenne and generalized k-Gaussian Mersenne numbers and their polynomials, (2021), arXiv preprint arXiv:2111.09592.
  • [16] P. Catarino, H. Campos, H., P. Vasco, On the Mersenne sequence, Ann. Math. Inform., 46 (2016), 37-53.
  • [17] N. Saba, A. Boussayoud, K. V. V. Kanuri, Mersenne Lucas numbers and complete homogeneous symmetric functions, J. Math. Comput. Sci., 24(2) (2021), 127- 139.
  • [18] A. Patra, M. K. Kaabar, Catalan transform of k-Balancing sequences, Int. J. Math. Math. Sci., 2021(1) 2021, 9987314.
  • [19] S. Kapoor, P. Kumar, Catalan Transformation of (s; t) Padovan Sequences, Asian Journal of Pure and Applied Mathematics, 5(1) (2023), 170-178.
  • [20] P. J. Larcombe, P. D. Wilson, On the generating function of the Catalan sequence: A historical perspective, Congr. Numer., 149 (2001), 97-108.
  • [21] J. W. Layman, The Hankel transform and some of its properties, J. Integer Seq., 4(1) 2001, 1-11.
  • [22] P. M. Rajkovi´c, M. D. Petkovi´c, P. Barry, The Hankel transform of the sum of consecutive generalized Catalan numbers, Integral Transforms Spec. Funct., 18(4) (2007), 285-296.
  • [23] K. Parmar, V. R. Gorty, Quaternion Hankel Transform and its Generalization, Sahand Commun. Math. Anal., 21(1) (2024), 67-81.
  • [24] E. Özkan, M. Uysal, B. Kulogğu, Catalan transform of the incomplete Jacobsthal numbers and incomplete generalized Jacobsthal polynomials, Asian-Eur. J. Math., 15(6) (2022), 2250119.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Engin Özkan 0000-0002-4188-7248

Bayram Şen 0009-0009-5570-4981

Hakan Akkuş 0000-0001-9716-9424

Mine Uysal 0000-0002-2362-3097

Erken Görünüm Tarihi 23 Şubat 2025
Yayımlanma Tarihi 25 Mart 2025
Gönderilme Tarihi 13 Ekim 2024
Kabul Tarihi 6 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA Özkan, E., Şen, B., Akkuş, H., Uysal, M. (2025). A Study on the k-Mersenne and k-Mersenne-Lucas Sequences. Universal Journal of Mathematics and Applications, 8(1), 1-7. https://doi.org/10.32323/ujma.1566270
AMA Özkan E, Şen B, Akkuş H, Uysal M. A Study on the k-Mersenne and k-Mersenne-Lucas Sequences. Univ. J. Math. Appl. Mart 2025;8(1):1-7. doi:10.32323/ujma.1566270
Chicago Özkan, Engin, Bayram Şen, Hakan Akkuş, ve Mine Uysal. “A Study on the K-Mersenne and K-Mersenne-Lucas Sequences”. Universal Journal of Mathematics and Applications 8, sy. 1 (Mart 2025): 1-7. https://doi.org/10.32323/ujma.1566270.
EndNote Özkan E, Şen B, Akkuş H, Uysal M (01 Mart 2025) A Study on the k-Mersenne and k-Mersenne-Lucas Sequences. Universal Journal of Mathematics and Applications 8 1 1–7.
IEEE E. Özkan, B. Şen, H. Akkuş, ve M. Uysal, “A Study on the k-Mersenne and k-Mersenne-Lucas Sequences”, Univ. J. Math. Appl., c. 8, sy. 1, ss. 1–7, 2025, doi: 10.32323/ujma.1566270.
ISNAD Özkan, Engin vd. “A Study on the K-Mersenne and K-Mersenne-Lucas Sequences”. Universal Journal of Mathematics and Applications 8/1 (Mart 2025), 1-7. https://doi.org/10.32323/ujma.1566270.
JAMA Özkan E, Şen B, Akkuş H, Uysal M. A Study on the k-Mersenne and k-Mersenne-Lucas Sequences. Univ. J. Math. Appl. 2025;8:1–7.
MLA Özkan, Engin vd. “A Study on the K-Mersenne and K-Mersenne-Lucas Sequences”. Universal Journal of Mathematics and Applications, c. 8, sy. 1, 2025, ss. 1-7, doi:10.32323/ujma.1566270.
Vancouver Özkan E, Şen B, Akkuş H, Uysal M. A Study on the k-Mersenne and k-Mersenne-Lucas Sequences. Univ. J. Math. Appl. 2025;8(1):1-7.

 23181

Universal Journal of Mathematics and Applications 

29207               

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.