Araştırma Makalesi
BibTex RIS Kaynak Göster

Analyzing Pre-Stressed Steel Beams with Lower Flange Arch Shape

Yıl 2023, Cilt: 15 Sayı: 2, 615 - 625, 14.07.2023
https://doi.org/10.29137/umagd.1217636

Öz

In this study, it is aimed to determine the ideal section height according to the beam mid-section height by examining the buckling behavior of pre-stressed beam with the lower flange arch shape of which theoretical and experimental studies have been done before, For this, about 250 finite element models were prepared in the Sap 2000 program and buckling analyzes were performed. In addition, with the FEMAP (Nastran) Finite Element Analysis program, a solid finite element model prepared and nonlinear buckling analysis was performed. As a result of the analysis made, it was seen that the buckling coefficient increased as the curvature of the lower beam flange increased. Depending on the pre-tension force and span, the largest buckling coefficient does not remain at a fixed point with respect to the beam mid-height (h) / edge height (H) ratio. However, it was observed that the buckling load coefficient increased significantly from values lower than about h/H = 0,6.

Kaynakça

  • AISC-360 (2016). Specification for Structural Steel Buildings, ANSI / AISC 360-16,
  • Austin W.J. & Ross J. (1976). Elastic buckling of arches under symmetrical loading, J. Struct. Div. 102 , 1085–1095.
  • Barnett R.L. (1957). Prestressed truss beams, J. Struct. Div. 83, 1191-1-1191–22.
  • Bharathi C.V., Kumar C.V. (2016). Effect of external prestressing on steel arches, Int. Res. J. Eng. Technol. 1382–1387.
  • Bradford M.A. (1991). Buckling of prestressed steel girders, Eng. Journal–American Inst. Steel Constr. 28, 98–101.
  • Circular Arches, J. Struct. Eng. 141, 04015006. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001240.
  • Coff L.,(1950). Prestressing of structural steel, Civ. Eng. 20, 64–65.
  • Constr. Steel Res. 66, 125–132. https://doi.org/10.1016/j.jcsr.2009.07.013.
  • Des. 28 , 1988–1993. https://doi.org/10.1016/j.matdes.2006.04.007.
  • Dou C., Guo Y.-L., Zhao S.-Y. & Pi Y.-L. (2015). Experimental Investigation into Flexural-Torsional Ultimate Resistance of Steel
  • Dou C., Guo Y.-F., Jiang Z.-Q., Gao W. & Pi Y.-L. (2018). In-plane buckling and design of steel tubular truss arches, Thin-Walled
  • Struct. 130, 613–621. https://doi.org/10.1016/j.tws.2018.06.024.
  • Magnel G. (1950). Prestressed steel structures, Struct. Eng. 28, 285–295.
  • Magnel G. (1954). Long prestressed steel truss erected for Belgian hangar, Civ. Enginner. 24 . 38–39.
  • Nazir C. (2003). Prestressed Steel Arch Bridge, J. Inst. Eng.
  • Ozcatalbas Y. & Ozer A. (2007). Investigation of fabrication and mechanical properties of internally prestressed steel I beam, Mater.
  • Park S., Kim T., Kim K. & Hong S. (2010). Flexural behavior of steel I-beam prestressed with externally unbonded tendons, J.
  • Petrov A.M. (1965). On the parameters of prestressed steel beam, IVSIA. 9–14.
  • Petrov A.M. (1967), On the choice of cross-section of prestressed steel beam, IVSIA. 3–6.
  • Pi Y.-L. & Trahair N.S. (1999). In-Plane Buckling and Design of Steel Arches, J. Struct. Eng. 125, 1291–1298. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:11(1291).
  • Polat E. Caglayan B. (2018) Finite element analysis of pre-stressed steel arch beams. https://doi.org/10.20528/cjsmec.2018.03.003
  • Ren Y., Wang Y., Wang B., Ban H., Song J. & Su G. (2018). Flexural behavior of steel deep beams prestressed with externally unbonded straight multi-tendons, Thin-Walled Struct. 131, 519–530. https://doi.org/10.1016/j.tws.2018.07.022.
  • Tochacek M. & Mehta C.L. (1972), No Title, J. Struct. Div. 98, 1273–1289.
  • Whipple S. (1847). A work on brigge building, Utica, N.Y.: H.H. Curtiss, printer.

Eğrisel Alt Başlıklı Çelik Kirişlerin Ön Germeli Davranışının İncelenmesi

Yıl 2023, Cilt: 15 Sayı: 2, 615 - 625, 14.07.2023
https://doi.org/10.29137/umagd.1217636

Öz

Bu çalışmada, daha önce teorik ve deneysel çalışmaları yapılan alt başlığı eğrisel, ön germeli kirişin, kiriş orta kesit yüksekliğine göre burkulma davranışı incelenip ideal kesit yüksekliğinin belirlenmesi amaçlanmıştır. Bunun için Sap 2000 programında 250 civarı sonlu elemanlar modeli hazırlanarak burkulma analizleri yapılmıştır. İlaveten FEMAP (Nastran) Sonlu elemanlar analizi programı ile de deneysel modele uygun solid sonlu elemanlar modeli oluşturulup nonlineer burkulma analizi yapılmıştır. Yapılan analizler sonucunda kiriş alt başlığının eğriselliği arttıkça burkulma katsayısının arttığı görülmüştür. Ön germe kuvvetine ve açıklığa bağlı olarak en büyük burkulma katsayısı, kiriş orta yüksekliği (h) / kenar yüksekliği (H) oranına göre sabit bir noktada kalmamakta. Bununla beraber yaklaşık h/H = 0,6 oranından düşük değerlerden itibaren, burkulma yükü katsayısının belirgin bir şekilde arttığı gözlenmiştir.

Kaynakça

  • AISC-360 (2016). Specification for Structural Steel Buildings, ANSI / AISC 360-16,
  • Austin W.J. & Ross J. (1976). Elastic buckling of arches under symmetrical loading, J. Struct. Div. 102 , 1085–1095.
  • Barnett R.L. (1957). Prestressed truss beams, J. Struct. Div. 83, 1191-1-1191–22.
  • Bharathi C.V., Kumar C.V. (2016). Effect of external prestressing on steel arches, Int. Res. J. Eng. Technol. 1382–1387.
  • Bradford M.A. (1991). Buckling of prestressed steel girders, Eng. Journal–American Inst. Steel Constr. 28, 98–101.
  • Circular Arches, J. Struct. Eng. 141, 04015006. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001240.
  • Coff L.,(1950). Prestressing of structural steel, Civ. Eng. 20, 64–65.
  • Constr. Steel Res. 66, 125–132. https://doi.org/10.1016/j.jcsr.2009.07.013.
  • Des. 28 , 1988–1993. https://doi.org/10.1016/j.matdes.2006.04.007.
  • Dou C., Guo Y.-L., Zhao S.-Y. & Pi Y.-L. (2015). Experimental Investigation into Flexural-Torsional Ultimate Resistance of Steel
  • Dou C., Guo Y.-F., Jiang Z.-Q., Gao W. & Pi Y.-L. (2018). In-plane buckling and design of steel tubular truss arches, Thin-Walled
  • Struct. 130, 613–621. https://doi.org/10.1016/j.tws.2018.06.024.
  • Magnel G. (1950). Prestressed steel structures, Struct. Eng. 28, 285–295.
  • Magnel G. (1954). Long prestressed steel truss erected for Belgian hangar, Civ. Enginner. 24 . 38–39.
  • Nazir C. (2003). Prestressed Steel Arch Bridge, J. Inst. Eng.
  • Ozcatalbas Y. & Ozer A. (2007). Investigation of fabrication and mechanical properties of internally prestressed steel I beam, Mater.
  • Park S., Kim T., Kim K. & Hong S. (2010). Flexural behavior of steel I-beam prestressed with externally unbonded tendons, J.
  • Petrov A.M. (1965). On the parameters of prestressed steel beam, IVSIA. 9–14.
  • Petrov A.M. (1967), On the choice of cross-section of prestressed steel beam, IVSIA. 3–6.
  • Pi Y.-L. & Trahair N.S. (1999). In-Plane Buckling and Design of Steel Arches, J. Struct. Eng. 125, 1291–1298. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:11(1291).
  • Polat E. Caglayan B. (2018) Finite element analysis of pre-stressed steel arch beams. https://doi.org/10.20528/cjsmec.2018.03.003
  • Ren Y., Wang Y., Wang B., Ban H., Song J. & Su G. (2018). Flexural behavior of steel deep beams prestressed with externally unbonded straight multi-tendons, Thin-Walled Struct. 131, 519–530. https://doi.org/10.1016/j.tws.2018.07.022.
  • Tochacek M. & Mehta C.L. (1972), No Title, J. Struct. Div. 98, 1273–1289.
  • Whipple S. (1847). A work on brigge building, Utica, N.Y.: H.H. Curtiss, printer.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Makaleler
Yazarlar

Erkan Polat 0000-0002-1080-3101

Barlas Özden Çağlayan 0000-0002-8986-9188

Erken Görünüm Tarihi 7 Temmuz 2023
Yayımlanma Tarihi 14 Temmuz 2023
Gönderilme Tarihi 12 Aralık 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 15 Sayı: 2

Kaynak Göster

APA Polat, E., & Çağlayan, B. Ö. (2023). Eğrisel Alt Başlıklı Çelik Kirişlerin Ön Germeli Davranışının İncelenmesi. International Journal of Engineering Research and Development, 15(2), 615-625. https://doi.org/10.29137/umagd.1217636

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.