Araştırma Makalesi
BibTex RIS Kaynak Göster

ELEKTRİKLİ ARAÇLAR İÇİN ESNEK EPOKSİ VE GERİ DÖNÜŞTÜRÜLMÜŞ POLİÜRETAN KÖPÜK TABANLI SES YALITIMI

Yıl 2025, Cilt: 30 Sayı: 1, 155 - 168, 28.04.2025
https://doi.org/10.17482/uumfd.1538719

Öz

Elektrikli araçlarda ses ergonomisinin iyileştirilmesi, çevresel gürültülere karşı duyarlılığı artırdığı için, geleneksel ses izolasyon malzemelerinin ötesine geçilerek yeni malzemeler üzerine araştırmalar yapılmaktadır. Bu çalışmada, ses dalgalarını zayıflatarak dalga boyunu küçültmek amacıyla geri dönüştürülmüş poliüretan (PU) köpük malzeme kullanılmıştır. Ses dalgalarının köpük malzemeden diğer ortama geçişini engellemek için elastik özelliklere sahip esnek epoksi, ST37 çelik ve Etilen Propilen Dien Metilen (EPDM) ses bariyerleri geliştirilmiştir. Kullanılan köpük malzemenin kalınlığı ve bariyer malzemelerine bağlı olarak ses yutum katsayıları (SAC) ve ses iletim kayıpları (STL) belirlenmiştir. Testler, empedans tüpü kullanılarak gerçekleştirilmiştir. Elde edilen bulgular, geliştirilen esnek epoksi ses bariyerinin ses iletim kaybını daha etkin bir şekilde sağladığını göstermiştir. PU köpük malzemenin kalınlığı artırılsa bile tek başına yeterli ses yalıtımı sağlamadığı, ancak esnek özelliklere sahip EPDM veya esnek epoksi bariyer malzeme ile kullanıldığında üstün ses yalıtımı sağladığı tespit edilmiştir. Geliştirilen izolasyon malzemelerinin dielektrik özelliklere de sahip olması nedeniyle, bu malzemelerin hem ses hem de elektrik yalıtımı için alternatif malzemeler arasında değerlendirilmesi önerilmektedir.

Etik Beyan

Uludağ Üniversitesi Mühendislik Fakültesi Dergisi’ne gönderilen, ELEKTRİKLİ ARAÇLAR İÇİN ESNEK EPOKSİ VE GERİ DÖNÜŞTÜRÜLMÜŞ POLİÜRETAN KÖPÜK TABANLI SES YALITIMI başlıklı makale için “etik kurul onayına gerek yoktur."

Kaynakça

  • Baydur, C., & Bayraktar, M. (2024) Effects of geometric parameters on sound absorption performance of acoustic metasurface with subwavelength thickness. Journal of the Faculty of Engineering and Architecture of Gazi University, 39(3), 1417–1425. https://doi.org/10.17341/gazimmfd.1155788
  • Boztoprak, Y., Ünal, M., Özada, Ç., Kuzu, E., Özer, H., Ergin, F., & Yazıcı, M. (2023) Sound insulation performance of honeycomb core aluminum sandwich panels with flexible epoxy-based foam infill, Composite Structures, 319. https://doi.org/10.1016/j.compstruct.2023.117149
  • Can, Y. (2019) Sound insulation performance of short cotton fibre waste/recycled acrylonitrile butadiene styrene composites, Acta Physica Polonica A, 135(4), 772–774. https://doi.org/10.12693/APhysPolA.135.772
  • Cao, L., Fu, Q., Si, Y., Ding, B., & Yu, J. (2018) Porous materials for sound absorption, In Composites Communications, 10, 25–35. https://doi.org/10.1016/j.coco.2018.05.001
  • Chua, J. W., Li, X., Yu, X., & Zhai, W. (2023) Novel slow-sound lattice absorbers based on the sonic black hole, Composite Structures, 304. https://doi.org/10.1016/j.compstruct.2022.116434
  • Fahy, F. (2005) Foundations of Engineering Acoustics, Elsevier Academic Press, San Diego.
  • Fan, S. T., Zhang, Y., Tan, M., Wang, J. X., Huang, C. Y., Li, B. J., & Zhang, S. (2023) Multifunctional elastic aerogels of nanofibrous metal−organic framework for thermal insulation and broadband low-frequency sound absorption, Composites Science and Technology, 242. https://doi.org/10.1016/j.compscitech.2023.110183
  • Gao, N., Tang, L., Deng, J., Lu, K., Hou, H., & Chen, K. (2021) Design, fabrication and sound absorption test of composite porous metamaterial with embedding I-plates into porous polyurethane sponge, Applied Acoustics, 175. https://doi.org/10.1016/j.apacoust.2020.107845
  • Gao, N., Wu, J., Lu, K., & Zhong, H. (2021) Hybrid composite meta-porous structure for improving and broadening sound absorption, Mechanical Systems and Signal Processing, 154. https://doi.org/10.1016/j.ymssp.2020.107504
  • Gao, N., Zhang, Z., Deng, J., Guo, X., Cheng, B., & Hou, H. (2022) Acoustic Metamaterials for Noise Reduction: A Review, In Advanced Materials Technologies, 7(6), https://doi.org/10.1002/admt.202100698
  • Ghassabi, M., & Talebitooti, R. (2022) Acoustic insulation feature of multiphase magneto-electro-elasticity shell systems with double curvature, Mechanics of Advanced Materials and Structures, 29(27), 6530–6542. https://doi.org/10.1080/15376494.2021.1980927
  • Li, Y., Lin, Y., Yao, S., & Shi, C. (2024) Low-frequency broadband sound absorption of the metastructure with extended tube resonators and porous materials, Applied Acoustics, 217. https://doi.org/10.1016/j.apacoust.2023.109827
  • Li, Z., Khajepour, A., & Song, J. (2019) A comprehensive review of the key technologies for pure electric vehicles, In Energy, 182, 824–839. https://doi.org/10.1016/j.energy.2019.06.077
  • Liu, Q., Liu, X., Zhang, C., & Xin, F. (2021) A novel multiscale porous composite structure for sound absorption enhancement, Composite Structures, 276. https://doi.org/10.1016/j.compstruct.2021.114456
  • Liu, Q., & Zhang, C. (2023) Broadband and low-frequency sound absorption by a slit-perforated multi-layered porous metamaterial, Engineering Structures, 281. https://doi.org/10.1016/j.engstruct.2023.115743
  • Rabbani, V., & Wu, N. (2021) Active broadband sound transmission loss control through an arbitrary thick smart Piezo-laminated cylinder, Aerospace Science and Technology, 110. https://doi.org/10.1016/j.ast.2021.106515.
  • Song, Y., Wen, J., Tian, H., Lu, X., Li, Z., Feng, L. (2020) Vibration and sound properties of metamaterial sandwich panels with periodically attached resonators: Simulation and experiment study, Journal of Sound and Vibration, 489. https://doi.org/10.1016/j.jsv.2020.115644.
  • ASTM C384-04, (2022). Standard test method for ımpedance and absorption of acoustical materials by impedance tube method, https://doi.org/10.1520/C0384-04R22
  • Tian, Z., Bennett, J., Yang, J., Lawrie, T., Elmadih, W., Bardalai, A., Gerada, C., Zhu, J., Chronopoulos, D. (2022) Experimental investigation of mechanical, acoustic and hybrid metamaterial designs for enhanced and multi-band electric motor noise dissipation, Engineering Structures, 271. https://doi.org/10.1016/j.engstruct.2022.114945.
  • Xie, S., Li, Z., Yan, H., & Yang, S. (2022) Ultra-broadband sound absorption performance of a multi-cavity composite structure filled with polyurethane, Applied Acoustics, 189. https://doi.org/10.1016/j.apacoust.2021.108612
  • Xin, F., Ma, X., Liu, X., & Zhang, C. (2019) A multiscale theoretical approach for the sound absorption of slit-perforated double porosity materials, Composite Structures, 223. https://doi.org/10.1016/j.compstruct.2019.110919
  • Zhu, J., Sun, J., Tang, H., Wang, J., Ao, Q., Bao, T., & Song, W. (2016), Gradient-structural optimization of metal fiber porous materials for sound absorption, Powder Technology, 301, 1235–1241. https://doi.org/10.1016/j.powtec.2016.08.006

Development of Sound Insulation Material Using Flexible Epoxy with Elastic Properties and Recycled Polyurethane Foams

Yıl 2025, Cilt: 30 Sayı: 1, 155 - 168, 28.04.2025
https://doi.org/10.17482/uumfd.1538719

Öz

Improving acoustic ergonomics in electric vehicles increases sensitivity to environmental noise, leading to research beyond traditional sound insulation materials towards new alternatives. In this study, recycled polyurethane (PU) foam material was used to attenuate sound waves and reduce their wavelength. To prevent the transmission of sound waves through the foam material into other environments, flexible epoxy with elastic properties, ST37 steel, and Ethylene Propylene Diene Monomer (EPDM) sound barriers were developed. Sound absorption coefficients (SAC) and sound transmission losses (STL) were determined based on the thickness of the foam material used and the barrier materials. The tests were conducted using an impedance tube. The findings showed that the developed flexible epoxy sound barrier provided a more effective sound transmission loss. It was observed that increasing the thickness of the PU foam material alone did not provide sufficient sound insulation, but when used with flexible materials like EPDM or flexible epoxy barrier, superior sound insulation was achieved. Considering that the developed insulation materials also possess dielectric properties, it is recommended that these materials be evaluated as alternatives for both sound and electrical insulation.

Kaynakça

  • Baydur, C., & Bayraktar, M. (2024) Effects of geometric parameters on sound absorption performance of acoustic metasurface with subwavelength thickness. Journal of the Faculty of Engineering and Architecture of Gazi University, 39(3), 1417–1425. https://doi.org/10.17341/gazimmfd.1155788
  • Boztoprak, Y., Ünal, M., Özada, Ç., Kuzu, E., Özer, H., Ergin, F., & Yazıcı, M. (2023) Sound insulation performance of honeycomb core aluminum sandwich panels with flexible epoxy-based foam infill, Composite Structures, 319. https://doi.org/10.1016/j.compstruct.2023.117149
  • Can, Y. (2019) Sound insulation performance of short cotton fibre waste/recycled acrylonitrile butadiene styrene composites, Acta Physica Polonica A, 135(4), 772–774. https://doi.org/10.12693/APhysPolA.135.772
  • Cao, L., Fu, Q., Si, Y., Ding, B., & Yu, J. (2018) Porous materials for sound absorption, In Composites Communications, 10, 25–35. https://doi.org/10.1016/j.coco.2018.05.001
  • Chua, J. W., Li, X., Yu, X., & Zhai, W. (2023) Novel slow-sound lattice absorbers based on the sonic black hole, Composite Structures, 304. https://doi.org/10.1016/j.compstruct.2022.116434
  • Fahy, F. (2005) Foundations of Engineering Acoustics, Elsevier Academic Press, San Diego.
  • Fan, S. T., Zhang, Y., Tan, M., Wang, J. X., Huang, C. Y., Li, B. J., & Zhang, S. (2023) Multifunctional elastic aerogels of nanofibrous metal−organic framework for thermal insulation and broadband low-frequency sound absorption, Composites Science and Technology, 242. https://doi.org/10.1016/j.compscitech.2023.110183
  • Gao, N., Tang, L., Deng, J., Lu, K., Hou, H., & Chen, K. (2021) Design, fabrication and sound absorption test of composite porous metamaterial with embedding I-plates into porous polyurethane sponge, Applied Acoustics, 175. https://doi.org/10.1016/j.apacoust.2020.107845
  • Gao, N., Wu, J., Lu, K., & Zhong, H. (2021) Hybrid composite meta-porous structure for improving and broadening sound absorption, Mechanical Systems and Signal Processing, 154. https://doi.org/10.1016/j.ymssp.2020.107504
  • Gao, N., Zhang, Z., Deng, J., Guo, X., Cheng, B., & Hou, H. (2022) Acoustic Metamaterials for Noise Reduction: A Review, In Advanced Materials Technologies, 7(6), https://doi.org/10.1002/admt.202100698
  • Ghassabi, M., & Talebitooti, R. (2022) Acoustic insulation feature of multiphase magneto-electro-elasticity shell systems with double curvature, Mechanics of Advanced Materials and Structures, 29(27), 6530–6542. https://doi.org/10.1080/15376494.2021.1980927
  • Li, Y., Lin, Y., Yao, S., & Shi, C. (2024) Low-frequency broadband sound absorption of the metastructure with extended tube resonators and porous materials, Applied Acoustics, 217. https://doi.org/10.1016/j.apacoust.2023.109827
  • Li, Z., Khajepour, A., & Song, J. (2019) A comprehensive review of the key technologies for pure electric vehicles, In Energy, 182, 824–839. https://doi.org/10.1016/j.energy.2019.06.077
  • Liu, Q., Liu, X., Zhang, C., & Xin, F. (2021) A novel multiscale porous composite structure for sound absorption enhancement, Composite Structures, 276. https://doi.org/10.1016/j.compstruct.2021.114456
  • Liu, Q., & Zhang, C. (2023) Broadband and low-frequency sound absorption by a slit-perforated multi-layered porous metamaterial, Engineering Structures, 281. https://doi.org/10.1016/j.engstruct.2023.115743
  • Rabbani, V., & Wu, N. (2021) Active broadband sound transmission loss control through an arbitrary thick smart Piezo-laminated cylinder, Aerospace Science and Technology, 110. https://doi.org/10.1016/j.ast.2021.106515.
  • Song, Y., Wen, J., Tian, H., Lu, X., Li, Z., Feng, L. (2020) Vibration and sound properties of metamaterial sandwich panels with periodically attached resonators: Simulation and experiment study, Journal of Sound and Vibration, 489. https://doi.org/10.1016/j.jsv.2020.115644.
  • ASTM C384-04, (2022). Standard test method for ımpedance and absorption of acoustical materials by impedance tube method, https://doi.org/10.1520/C0384-04R22
  • Tian, Z., Bennett, J., Yang, J., Lawrie, T., Elmadih, W., Bardalai, A., Gerada, C., Zhu, J., Chronopoulos, D. (2022) Experimental investigation of mechanical, acoustic and hybrid metamaterial designs for enhanced and multi-band electric motor noise dissipation, Engineering Structures, 271. https://doi.org/10.1016/j.engstruct.2022.114945.
  • Xie, S., Li, Z., Yan, H., & Yang, S. (2022) Ultra-broadband sound absorption performance of a multi-cavity composite structure filled with polyurethane, Applied Acoustics, 189. https://doi.org/10.1016/j.apacoust.2021.108612
  • Xin, F., Ma, X., Liu, X., & Zhang, C. (2019) A multiscale theoretical approach for the sound absorption of slit-perforated double porosity materials, Composite Structures, 223. https://doi.org/10.1016/j.compstruct.2019.110919
  • Zhu, J., Sun, J., Tang, H., Wang, J., Ao, Q., Bao, T., & Song, W. (2016), Gradient-structural optimization of metal fiber porous materials for sound absorption, Powder Technology, 301, 1235–1241. https://doi.org/10.1016/j.powtec.2016.08.006
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler, Otomotiv Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Hakkı Özer 0000-0003-0951-8490

Erken Görünüm Tarihi 11 Nisan 2025
Yayımlanma Tarihi 28 Nisan 2025
Gönderilme Tarihi 26 Ağustos 2024
Kabul Tarihi 5 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 1

Kaynak Göster

APA Özer, H. (2025). ELEKTRİKLİ ARAÇLAR İÇİN ESNEK EPOKSİ VE GERİ DÖNÜŞTÜRÜLMÜŞ POLİÜRETAN KÖPÜK TABANLI SES YALITIMI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 30(1), 155-168. https://doi.org/10.17482/uumfd.1538719
AMA Özer H. ELEKTRİKLİ ARAÇLAR İÇİN ESNEK EPOKSİ VE GERİ DÖNÜŞTÜRÜLMÜŞ POLİÜRETAN KÖPÜK TABANLI SES YALITIMI. UUJFE. Nisan 2025;30(1):155-168. doi:10.17482/uumfd.1538719
Chicago Özer, Hakkı. “ELEKTRİKLİ ARAÇLAR İÇİN ESNEK EPOKSİ VE GERİ DÖNÜŞTÜRÜLMÜŞ POLİÜRETAN KÖPÜK TABANLI SES YALITIMI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30, sy. 1 (Nisan 2025): 155-68. https://doi.org/10.17482/uumfd.1538719.
EndNote Özer H (01 Nisan 2025) ELEKTRİKLİ ARAÇLAR İÇİN ESNEK EPOKSİ VE GERİ DÖNÜŞTÜRÜLMÜŞ POLİÜRETAN KÖPÜK TABANLI SES YALITIMI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30 1 155–168.
IEEE H. Özer, “ELEKTRİKLİ ARAÇLAR İÇİN ESNEK EPOKSİ VE GERİ DÖNÜŞTÜRÜLMÜŞ POLİÜRETAN KÖPÜK TABANLI SES YALITIMI”, UUJFE, c. 30, sy. 1, ss. 155–168, 2025, doi: 10.17482/uumfd.1538719.
ISNAD Özer, Hakkı. “ELEKTRİKLİ ARAÇLAR İÇİN ESNEK EPOKSİ VE GERİ DÖNÜŞTÜRÜLMÜŞ POLİÜRETAN KÖPÜK TABANLI SES YALITIMI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30/1 (Nisan 2025), 155-168. https://doi.org/10.17482/uumfd.1538719.
JAMA Özer H. ELEKTRİKLİ ARAÇLAR İÇİN ESNEK EPOKSİ VE GERİ DÖNÜŞTÜRÜLMÜŞ POLİÜRETAN KÖPÜK TABANLI SES YALITIMI. UUJFE. 2025;30:155–168.
MLA Özer, Hakkı. “ELEKTRİKLİ ARAÇLAR İÇİN ESNEK EPOKSİ VE GERİ DÖNÜŞTÜRÜLMÜŞ POLİÜRETAN KÖPÜK TABANLI SES YALITIMI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 30, sy. 1, 2025, ss. 155-68, doi:10.17482/uumfd.1538719.
Vancouver Özer H. ELEKTRİKLİ ARAÇLAR İÇİN ESNEK EPOKSİ VE GERİ DÖNÜŞTÜRÜLMÜŞ POLİÜRETAN KÖPÜK TABANLI SES YALITIMI. UUJFE. 2025;30(1):155-68.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr