Derleme
BibTex RIS Kaynak Göster

Gıda endüstrisinde yeni bir kaynak olarak mikroalgler

Yıl 2025, Cilt: 96 Sayı: 2, 165 - 178, 15.06.2025
https://doi.org/10.33188/vetheder.1628394

Öz

Artan dünya nüfusu, çevre kirliliği, enerji tüketimi ve iklim değişikliği, sürdürülebilir gıda kaynaklarına olan ihtiyacı vurgulamaktadır. Mikroalgler, gıda, ilaç, hayvan yemi, biyogübre, atık su arıtma ve biyoenerji gibi çeşitli alanlarda uygulamalarıyla çevre dostu ve sürdürülebilir bir alternatif olarak ortaya çıkmıştır. 50.000’den fazla sınıflandırılmış türüyle mikroalgler, besince zengin sularda gelişerek besinleri geri dönüştürürken, atık su arıtımı ve çevresel iyileştirme gibi sürdürülebilir faydalar sunar. Yüksek fotosentez verimliliği sayesinde biyoyakıt ve biyokütle üretimini destekleyerek sürdürülebilir uygulamaları teşvik eder. Gıda endüstrisinde yaygın olarak kullanılan temel mikroalg türleri arasında Arthospira platensis (Spirulina), Chlorella vulgaris ve Duniella salina bulunmaktadır ve bu türler dünya genelinde çeşitli uygulamalar için yetiştirilmektedir. Arthospira platensis biyokütlesinde %70'e kadar protein içeriği barındırırken, Euglena gracilis ve Chlorella vulgaris gibi türler yaklaşık %40 protein içeriği sunar. Mikroalgler, protein, karbonhidrat ve çoklu doymamış yağ asitleri gibi birincil metabolitlerin yanı sıra, pigmentler ve fitosteroller gibi sağlık açısından faydalı ikincil metabolitler üretir ve fonksiyonel gıda olarak kullanılmalarını destekler. Mikroalglerin yetiştirilmesi sürdürülebilir bir yöntemdir; daha az alan gerektirir, tarım için uygun olmayan bölgelerde yetiştirilebilir ve hızlı büyüme ile sık hasat avantajı sunar. Ticari üretim Japonya’da Chlorella ile başlamış, ardından Meksika’da Spirulina ve ABD’de Duniella salina’nın beta-karoten üretimi için kullanılmasıyla devam etmiştir. Hindistan’da ise siyanobakteriler ve Haematococcus pluvialis astaksantin üretimi için kullanılmaktadır. Yüksek verimliliği, maliyet etkinliği ve uyarlanabilirliği ile mikroalgler, geleceğin sürdürülebilir alternatif gıda kaynağı olarak büyük potansiyele sahiptir.

Kaynakça

  • FAO, IFAD, UNICEF, WFP, WHO. The state of food security and nutrition in the world 2017: Building resilience for peace and food security. In: Proceedings of the Food Security Conference, 2017, Rome, Italy.
  • Nova P, Martins AP, Teixeira C, Abreu H, Silva JG, Silva AM, et al. Foods with microalgae and seaweeds fostering consumers health: A review on scientific and market innovations. J Appl Phycol 2020;32(3):1789–1802.
  • Bleakley S, Hayes M. Algal proteins: Extraction, application, and challenges concerning production. Foods 2017;6(5):33.
  • Torres-Tiji Y, Fields FJ, Mayfield SP. Microalgae as a future food source. Biotechnol Adv 2020;41:107536.
  • Khan MI, Shin JH, Kim JD. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 2018;17(1):36
  • Levasseur W, Perré P, Pozzobon V. A review of high value-added molecules production by microalgae in light of the classification. Biotechnol Adv 2020;41:107545.
  • Raj S, Kuniyil AM, Sreenikethanam A, Gugulothu P, Jeyakumar RB, Bajhaiya AK. Microalgae as a source of mycosporine-like amino acids (MAAs); advances and future prospects. Int J Environ Res Public Health 2021;18(23):12402.
  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng 2006;101(2):87–96.
  • Borowitzka MA. Commercial production of microalgae: Ponds, tanks, tubes and fermenters. J Biotechnol 1999;70(1–3):313–321.
  • Iwamoto H. Industrial production of microalgal cell-mass and secondary products—Major industrial species: Chlorella. In: Richmond A, editor. Handbook of microalgal culture. 2003. p. 135–142.
  • Sidari R, Tofalo R. A comprehensive overview on microalgal-fortified/based food and beverages. Food Rev Int 2019;35(8):778–805.
  • Ismailkhodjaev BSh, Khalmurzayeva BA, Satayev MI, Alibekov RS. Study of vitamins content of microalgae. News Natl Acad Sci Repub Kazakhstan: Series Chem Technol 2019;4(436):19–24.
  • Hachicha R, Elleuch F, Ben Hlima H, Dubessay P, de Baynast H, Delattre C, et al. Biomolecules from microalgae and cyanobacteria: Applications and market survey. Appl Sci 2022;12(4):1924.
  • Udayan A, Arumugam M, Pandey A. Nutraceuticals from algae and cyanobacteria. In: Rastogi RP, Madamwar D, Pandey A, editors. Algal green chemistry. Elsevier; 2017. p. 65–89.
  • Anonymous. United Nations, Department of Economic and Social Affairs, Population Division. World population prospects: The 2010 revision, volume I: Comprehensive tables (ST/ESA/SER.A/313). 2011.
  • Becker EW. Microalgae for human and animal nutrition. In: Richmond A, Hu Q, editors. Handbook of microalgal culture: Applied phycology and biotechnology. 2nd ed. Chichester: Wiley-Blackwell; 2013. p. 90-113.
  • Begum H, Yusoff FM, Banerjee S, Khatoon H, Shariff M. Availability and utilization of pigments from microalgae. Crit Rev Food Sci Nutr 2016;56(13):2209–2222.
  • Andreeva A, Budenkova E, Babich O, Sukhikh S, Ulrikh E, Ivanova S, et al. Production, purification, and study of the amino acid composition of microalgae proteins. Molecules 2021;26(9):2767.
  • Sui Y, Harvey PJ. Effect of light intensity and wavelength on biomass growth and protein and amino acid composition of Dunaliella salina. Foods 2021;10(5):1018.
  • Grossmann L, Hinrichs J, Weiss J. Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Crit Rev Food Sci Nutr 2019;60(17):2961–89.
  • Pereira H, Silva J, Santos T, Gangadhar KN, Raposo A, Nunes C, et al. Nutritional potential and toxicological evaluation of Tetraselmis sp. CTP4 microalgal biomass produced in industrial photobioreactors. Molecules 2019;24(17):3192.
  • Luo X, Su P, Zhang W. Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications. Mar Drugs 2015;13(7):4231–4254.
  • Maltsev Y, Maltseva K. Fatty acids of microalgae: Diversity and applications. Rev Environ Sci Biotechnol 2021;20(4):515–547.
  • Markou G, Angelidaki I, Georgakakis D. Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 2012;96(3):631–645.
  • Sekar S, Muruganandham C. Phycobiliproteins as a commodity: Trends in applied research, patents, and commercialization. J Appl Phycol 2007;20(1):113–136.
  • Gross J. Chlorophylls. In: Reinhold VN, editor. Pigments in vegetables—Chlorophylls and carotenoids. 1991. p. 3–74.
  • Koru E. Earth food Spirulina (Arthrospira): Production and quality standards. InTech 2012.
  • Fu Y, Wang Y, Yi L, Liu J, Yang S, Liu B, et al. Lutein production from microalgae: A review. Bioresour Technol 2023;376:128875.
  • Kumar S, Kumar R, Diksha, Kumari A, Panwar A. Astaxanthin: A super antioxidant from microalgae and its therapeutic potential. J Basic Microbiol 2022;62(9):1064–1082.
  • Rathinam Raja A, Coelho A, Hemaiswarya S, Kumar P, Carvalho IS, Alagarsamy A. Applications of microalgal paste and powder as food and feed: An update using text mining tool. Beni-Suef Univ J Basic Appl Sci 2018;7(4):740–747.
  • FAO. Pathways towards lower emissions: A global assessment of the greenhouse gas emissions and mitigation options from livestock agrifood systems. In: Proceedings of the Livestock Emissions Conference, 2023, Rome, Italy. 2023.
  • Kinley RD, Martinez-Fernandez G, Matthews MK, de Nys R, Magnusson M, Tomkins NW. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J Clean Prod 2020;259:120836.
  • Sucu E. Effects of microalgae species on in vitro rumen fermentation pattern and methane production. Ann Anim Sci 2020;20(1):207–218.
  • Andrade L, De Andrade CJ, Dias M, Nascimento C, Mendes M. Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements: An overview. MOJ Food Process Technol 2018;6:00144.
  • Su M, Bastiaens L, Verspreet J, Hayes M. Applications of microalgae in foods, pharma and feeds and their use as fertilizers and biostimulants: Legislation and regulatory aspects for consideration. Foods 2023;12:3878.
  • Rodríguez De Marco E, Steffolani ME, Martínez CS, León AE. Effects of Spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT - Food Sci Technol 2014;58(1):102–108.
  • Bonos E, Kasapidou E, Kargopoulos A, Karampampas A, Christaki E, Florou-Paneri P, et al. Spirulina as a functional ingredient in broiler chicken diets. S Afr J Anim Sci 2016;46(1):94.
  • Ansari FA, Guldhe A, Gupta SK, et al. Improving the feasibility of aquaculture feed by using microalgae. Environ Sci Pollut Res 2021;28:43234–43257.
  • Smith DM. Feeding algae to cattle at low doses to produce high omega-3 levels in beef (U.S. Patent No. 0354168). Washington, DC: U.S. Patent and Trademark Office; 2017.
  • Stiefvatter L, Lehnert K, Frick K, Montoya-Arroyo A, Frank J, Vetter W, et al. Oral bioavailability of omega-3 fatty acids and carotenoids from the microalgae Phaeodactylum tricornutum in healthy young adults. Mar Drugs 2021;19(12):700.
  • Palabiyik I, Durmaz Y, Öner B, et al. Using spray-dried microalgae as a natural coloring agent in chewing gum: Effects on color, sensory, and textural properties. J Appl Phycol 2018;30:1031–9.
  • Hossain AKMM, Brennan MA, Mason SL, Guo X, Zeng XA, Brennan CS. The effect of astaxanthin-rich microalgae Haematococcus pluvialis and wholemeal flours incorporation in improving the physical and functional properties of cookies. Foods 2017;6(8):57.
  • da Silva SP, do Valle AF, Perrone D. Microencapsulated Spirulina maxima biomass as an ingredient for the production of nutritionally enriched and sensorially well-accepted vegan biscuits. LWT 2021;142:110997.
  • Ak B, Avsaroglu E, Isik O, Özyurt G, Kafkas E, Etyemez M. Nutritional and physicochemical characteristics of bread enriched with microalgae Spirulina platensis. Int J Eng Res Appl 2016;6(9).
  • Alam MA, Xu JL, Wang Z, editors. Microalgae biotechnology for food, health and high value products. Singapore: Springer; 2020.
  • Vigani M, Parisi C, Rodríguez-Cerezo E, Barbosa MJ, Sijtsma L, Ploeg M, et al. Food and feed products from micro-algae: Market opportunities and challenges for the EU. Trends Food Sci Technol 2015;42(1):81–92.
  • Enzing C, Ploeg M, Barbosa MJ, Sijtsma L. Microalgae-based products for food and feed sector: An outlook for Europe. 2014.
  • FDA. GRAS. Available from: https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras. Accessed date: September 20, 2024.
  • Anonymous. Health Food Regulatory System in Japan, 2019. Available from: https://food.chemlinked.com/foodpedia/health-food-regulatory-system-japan. Accessed date: September 20, 2024.
  • Schüler L, Greque de Morais E, Trovão M, Machado A, Carvalho B, Carneiro M, et al. Isolation and characterization of novel Chlorella vulgaris mutants with low chlorophyll and improved protein contents for food applications. Front Bioeng Biotechnol 2020;8:Article 469.
  • Barsanti L, Gualtieri P. Algae: Anatomy, biochemistry, and biotechnology. 3rd ed. Boca Raton: CRC Press; 2022.
  • Anonymous. Shen R. Health Food Regulatory System in Japan [Internet]. 2019 [cited 2025 Mar 13]. Available from: https://food.chemlinked.com/foodpedia/health-food-regulatory-system-japan
  • Anonymous. Türk Gıda Kodeksi Gıda Katkı Maddeleri Yönetmeliği. Available from: https://www.tarimorman.gov.tr/Konu/2024/TGK_Katki_Maddeleri_Yonetmeligi_Gida_K. Accessed date: October 23, 2024.
  • Anonymous. Gıdalarda kullanılabilecek bitkiler, mantarlar, algler ve likenler hakkında yönetmelik taslağı. Available from: https://www.tarimorman.gov.tr/GKGM/Sayfalar/Detay.aspx?TermStoreId=368e785b-af33-487d-a98d-c11d5495130b&TermSetId=c9118bad-41d2-40a8-9352-d3c5d954b355&TermId=23f6df2f-b835-4924-8e6c-97fc71cb8bee&UrlSuffix=467/Mevzuat-Taslagi-Tgk-Gidalarda-Kullanilabilecek-Bitkiler-Mantarlar-Algler-Ve-Likenler-Hakkinda-Yonetmelik. Accessed date: October 23, 2024.
  • Anonymous. Mevzuat Taslağı - TGK Yeni Gıdalar Yönetmeliği [Internet]. [cited 2025 Mar 13]. Available from: https://www.tarimorman.gov.tr/GKGM/Duyuru/600/Mevzuat-Taslagi-Tgk-Yeni-Gidalar-Yonetmeligi
  • Rahman KM. Food and high value products from microalgae: Market opportunities and challenges. In: Alam M, Xu JL, Wang Z, editors. Microalgae biotechnology for food, health and high value products. Singapore: Springer; 2020. p. 1–14.
  • Wang A, Alam M, Xu JL, Wang Z. Microalgae as a mainstream food ingredient: Demand and supply perspective. In: Alam M, Xu JL, Wang Z, editors. Microalgae biotechnology for food, health and high value products. Singapore: Springer; 2020. p. 17–32.
  • Tredici MR. Photobiology of microalgae mass cultures: Understanding the tools for the next green revolution. Biofuels 2010;1(1):143–162.
  • Anonymous. Ministry of Health, Labour and Welfare (MHLW). Food Safety in Japan [Internet]. 2019 Sep 6 [cited 2025 Mar 13]. Available from: https://www.mhlw.go.jp/english/topics/foodsafety/index.html
  • Nethravathy MU, Mehar JG, Mudliar SN, Shekh AY. Recent advances in microalgal bioactives for food, feed, and healthcare products: Commercial potential, market space, and sustainability. Compr Rev Food Sci Food Saf 2019;18(6):1882–1897.
  • Suali E, Sarbatly R. Conversion of microalgae to biofuel. Renew Sustain Energy Rev 2012;16(6):4316–4342.
  • Buono S, Langellotti AL, Martello A, Rinna F, Fogliano V. Functional ingredients from microalgae. Food Funct 2014;5(8):1669–1685.
  • Day AG, Brinkmann D, Franklin S, Espina K, Rudenko G, Roberts A, et al. Safety evaluation of a high-lipid algal biomass from Chlorella protothecoides. Regul Toxicol Pharmacol 2009;55(2):166–180.
  • Rogers EH, Hunter ES III, Moser VC, Phillips PM, Herkovits J, Muñoz L, et al. Potential developmental toxicity of anatoxin-a, a cyanobacterial toxin. J Appl Toxicol 2005;25(6):527–537.
  • Vichi S, Lavorini P, Funari E, Scardala S, Testai E. Contamination by Microcystis and microcystins of blue–green algae food supplements (BGAS) on the Italian market and possible risk for the exposed population. Food Chem Toxicol 2012;50(12):4493–4499.
  • James CA, Welham S, Rose P. Edible algae allergenicity – a short report. J Appl Phycol 2023;35(2):339–352.
  • Le T-M, Knulst AC, Röckmann H. Anaphylaxis to Spirulina confirmed by skin prick test with ingredients of Spirulina tablets. Food Chem Toxicol 2014;74:309–310.
  • Caporgno MP, Mathys A. Trends in microalgae incorporation into innovative food products with potential health benefits. Front Nutr 2018;5:58.
  • Borowitzka MA. High-value products from microalgae—their development and commercialization. J Appl Phycol 2013;25(5):743–756.
  • Charoonnart P, Taunt HN, Yang L, Webb C, Robinson C, Saksmerprome V, et al. Transgenic microalgae expressing double-stranded RNA as potential feed supplements for controlling white spot syndrome in shrimp aquaculture. Microorganisms 2023;11(8):1893.
  • Patel IK, Das A, Kumari R, Kajla S. Recent progress and challenges in CRISPR-Cas9 engineered algae and cyanobacteria. Algal Res 2023;71:103068.
  • Kamal AH, Mohd Hamidi NF, Zakaria MF, et al. Genetically engineered microalgae for enhanced bioactive compounds. Discov Appl Sci 2024;6:482.
  • Qv M, Dai D, Wu Q, Wang W, Li L, Zhu L. Metagenomic insight into the horizontal transfer mechanism of fluoroquinolone antibiotic resistance genes mediated by mobile genetic elements in microalgae-bacteria consortia. J Environ Manage 2025;380:124946.

Microalgae as a new resource in the food industry

Yıl 2025, Cilt: 96 Sayı: 2, 165 - 178, 15.06.2025
https://doi.org/10.33188/vetheder.1628394

Öz

The increasing global population, environmental pollution, energy consumption, and climate change have emphasized the need for sustainable food sources. Microalgae have emerged as an eco-friendly and sustainable alternative, with applications in food, pharmaceuticals, animal feed, biofertilizers, wastewater treatment, and bioenergy. With over 50,000 classified species, microalgae thrive in nutrient-rich waters, recycling nutrients while offering sustainable benefits like wastewater treatment and environmental improvement. Their high photosynthetic efficiency also supports biofuel and biomass production, promoting sustainable practices. Key microalgal species used in the food industry include Arthospira platensis (Spirulina), Chlorella vulgaris, and Duniella salina, cultivated globally for various applications. Arthrospira platensis contains up to 70% protein in its biomass, while algal species such as Euglena gracilis and Chlorella vulgaris contain up to 40% protein. Besides primary metabolites such as proteins, carbohydrates, and polyunsaturated fatty acids, microalgae produce secondary metabolites like pigments and phytosterols with known health benefits, supporting their use as functional foods. Microalgae cultivation is a sustainable approach to biomass production, characterized by its low land requirement, adaptability to non-arable regions, and high productivity. Its rapid growth rate and frequent harvesting potential make it a viable and resource-efficient alternative to conventional agricultural practices. Commercial cultivation began with Chlorella in Japan, followed by Spirulina in Mexico and Duniella salina in the U.S. for beta-carotene production. In India, cyanobacteria and Haematococcus pluvialis are used for astaxanthin. With high efficiency, cost-effectiveness, and adaptability, microalgae hold significant potential as a sustainable alternative food source for the future.

Kaynakça

  • FAO, IFAD, UNICEF, WFP, WHO. The state of food security and nutrition in the world 2017: Building resilience for peace and food security. In: Proceedings of the Food Security Conference, 2017, Rome, Italy.
  • Nova P, Martins AP, Teixeira C, Abreu H, Silva JG, Silva AM, et al. Foods with microalgae and seaweeds fostering consumers health: A review on scientific and market innovations. J Appl Phycol 2020;32(3):1789–1802.
  • Bleakley S, Hayes M. Algal proteins: Extraction, application, and challenges concerning production. Foods 2017;6(5):33.
  • Torres-Tiji Y, Fields FJ, Mayfield SP. Microalgae as a future food source. Biotechnol Adv 2020;41:107536.
  • Khan MI, Shin JH, Kim JD. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 2018;17(1):36
  • Levasseur W, Perré P, Pozzobon V. A review of high value-added molecules production by microalgae in light of the classification. Biotechnol Adv 2020;41:107545.
  • Raj S, Kuniyil AM, Sreenikethanam A, Gugulothu P, Jeyakumar RB, Bajhaiya AK. Microalgae as a source of mycosporine-like amino acids (MAAs); advances and future prospects. Int J Environ Res Public Health 2021;18(23):12402.
  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng 2006;101(2):87–96.
  • Borowitzka MA. Commercial production of microalgae: Ponds, tanks, tubes and fermenters. J Biotechnol 1999;70(1–3):313–321.
  • Iwamoto H. Industrial production of microalgal cell-mass and secondary products—Major industrial species: Chlorella. In: Richmond A, editor. Handbook of microalgal culture. 2003. p. 135–142.
  • Sidari R, Tofalo R. A comprehensive overview on microalgal-fortified/based food and beverages. Food Rev Int 2019;35(8):778–805.
  • Ismailkhodjaev BSh, Khalmurzayeva BA, Satayev MI, Alibekov RS. Study of vitamins content of microalgae. News Natl Acad Sci Repub Kazakhstan: Series Chem Technol 2019;4(436):19–24.
  • Hachicha R, Elleuch F, Ben Hlima H, Dubessay P, de Baynast H, Delattre C, et al. Biomolecules from microalgae and cyanobacteria: Applications and market survey. Appl Sci 2022;12(4):1924.
  • Udayan A, Arumugam M, Pandey A. Nutraceuticals from algae and cyanobacteria. In: Rastogi RP, Madamwar D, Pandey A, editors. Algal green chemistry. Elsevier; 2017. p. 65–89.
  • Anonymous. United Nations, Department of Economic and Social Affairs, Population Division. World population prospects: The 2010 revision, volume I: Comprehensive tables (ST/ESA/SER.A/313). 2011.
  • Becker EW. Microalgae for human and animal nutrition. In: Richmond A, Hu Q, editors. Handbook of microalgal culture: Applied phycology and biotechnology. 2nd ed. Chichester: Wiley-Blackwell; 2013. p. 90-113.
  • Begum H, Yusoff FM, Banerjee S, Khatoon H, Shariff M. Availability and utilization of pigments from microalgae. Crit Rev Food Sci Nutr 2016;56(13):2209–2222.
  • Andreeva A, Budenkova E, Babich O, Sukhikh S, Ulrikh E, Ivanova S, et al. Production, purification, and study of the amino acid composition of microalgae proteins. Molecules 2021;26(9):2767.
  • Sui Y, Harvey PJ. Effect of light intensity and wavelength on biomass growth and protein and amino acid composition of Dunaliella salina. Foods 2021;10(5):1018.
  • Grossmann L, Hinrichs J, Weiss J. Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Crit Rev Food Sci Nutr 2019;60(17):2961–89.
  • Pereira H, Silva J, Santos T, Gangadhar KN, Raposo A, Nunes C, et al. Nutritional potential and toxicological evaluation of Tetraselmis sp. CTP4 microalgal biomass produced in industrial photobioreactors. Molecules 2019;24(17):3192.
  • Luo X, Su P, Zhang W. Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications. Mar Drugs 2015;13(7):4231–4254.
  • Maltsev Y, Maltseva K. Fatty acids of microalgae: Diversity and applications. Rev Environ Sci Biotechnol 2021;20(4):515–547.
  • Markou G, Angelidaki I, Georgakakis D. Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 2012;96(3):631–645.
  • Sekar S, Muruganandham C. Phycobiliproteins as a commodity: Trends in applied research, patents, and commercialization. J Appl Phycol 2007;20(1):113–136.
  • Gross J. Chlorophylls. In: Reinhold VN, editor. Pigments in vegetables—Chlorophylls and carotenoids. 1991. p. 3–74.
  • Koru E. Earth food Spirulina (Arthrospira): Production and quality standards. InTech 2012.
  • Fu Y, Wang Y, Yi L, Liu J, Yang S, Liu B, et al. Lutein production from microalgae: A review. Bioresour Technol 2023;376:128875.
  • Kumar S, Kumar R, Diksha, Kumari A, Panwar A. Astaxanthin: A super antioxidant from microalgae and its therapeutic potential. J Basic Microbiol 2022;62(9):1064–1082.
  • Rathinam Raja A, Coelho A, Hemaiswarya S, Kumar P, Carvalho IS, Alagarsamy A. Applications of microalgal paste and powder as food and feed: An update using text mining tool. Beni-Suef Univ J Basic Appl Sci 2018;7(4):740–747.
  • FAO. Pathways towards lower emissions: A global assessment of the greenhouse gas emissions and mitigation options from livestock agrifood systems. In: Proceedings of the Livestock Emissions Conference, 2023, Rome, Italy. 2023.
  • Kinley RD, Martinez-Fernandez G, Matthews MK, de Nys R, Magnusson M, Tomkins NW. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J Clean Prod 2020;259:120836.
  • Sucu E. Effects of microalgae species on in vitro rumen fermentation pattern and methane production. Ann Anim Sci 2020;20(1):207–218.
  • Andrade L, De Andrade CJ, Dias M, Nascimento C, Mendes M. Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements: An overview. MOJ Food Process Technol 2018;6:00144.
  • Su M, Bastiaens L, Verspreet J, Hayes M. Applications of microalgae in foods, pharma and feeds and their use as fertilizers and biostimulants: Legislation and regulatory aspects for consideration. Foods 2023;12:3878.
  • Rodríguez De Marco E, Steffolani ME, Martínez CS, León AE. Effects of Spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT - Food Sci Technol 2014;58(1):102–108.
  • Bonos E, Kasapidou E, Kargopoulos A, Karampampas A, Christaki E, Florou-Paneri P, et al. Spirulina as a functional ingredient in broiler chicken diets. S Afr J Anim Sci 2016;46(1):94.
  • Ansari FA, Guldhe A, Gupta SK, et al. Improving the feasibility of aquaculture feed by using microalgae. Environ Sci Pollut Res 2021;28:43234–43257.
  • Smith DM. Feeding algae to cattle at low doses to produce high omega-3 levels in beef (U.S. Patent No. 0354168). Washington, DC: U.S. Patent and Trademark Office; 2017.
  • Stiefvatter L, Lehnert K, Frick K, Montoya-Arroyo A, Frank J, Vetter W, et al. Oral bioavailability of omega-3 fatty acids and carotenoids from the microalgae Phaeodactylum tricornutum in healthy young adults. Mar Drugs 2021;19(12):700.
  • Palabiyik I, Durmaz Y, Öner B, et al. Using spray-dried microalgae as a natural coloring agent in chewing gum: Effects on color, sensory, and textural properties. J Appl Phycol 2018;30:1031–9.
  • Hossain AKMM, Brennan MA, Mason SL, Guo X, Zeng XA, Brennan CS. The effect of astaxanthin-rich microalgae Haematococcus pluvialis and wholemeal flours incorporation in improving the physical and functional properties of cookies. Foods 2017;6(8):57.
  • da Silva SP, do Valle AF, Perrone D. Microencapsulated Spirulina maxima biomass as an ingredient for the production of nutritionally enriched and sensorially well-accepted vegan biscuits. LWT 2021;142:110997.
  • Ak B, Avsaroglu E, Isik O, Özyurt G, Kafkas E, Etyemez M. Nutritional and physicochemical characteristics of bread enriched with microalgae Spirulina platensis. Int J Eng Res Appl 2016;6(9).
  • Alam MA, Xu JL, Wang Z, editors. Microalgae biotechnology for food, health and high value products. Singapore: Springer; 2020.
  • Vigani M, Parisi C, Rodríguez-Cerezo E, Barbosa MJ, Sijtsma L, Ploeg M, et al. Food and feed products from micro-algae: Market opportunities and challenges for the EU. Trends Food Sci Technol 2015;42(1):81–92.
  • Enzing C, Ploeg M, Barbosa MJ, Sijtsma L. Microalgae-based products for food and feed sector: An outlook for Europe. 2014.
  • FDA. GRAS. Available from: https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras. Accessed date: September 20, 2024.
  • Anonymous. Health Food Regulatory System in Japan, 2019. Available from: https://food.chemlinked.com/foodpedia/health-food-regulatory-system-japan. Accessed date: September 20, 2024.
  • Schüler L, Greque de Morais E, Trovão M, Machado A, Carvalho B, Carneiro M, et al. Isolation and characterization of novel Chlorella vulgaris mutants with low chlorophyll and improved protein contents for food applications. Front Bioeng Biotechnol 2020;8:Article 469.
  • Barsanti L, Gualtieri P. Algae: Anatomy, biochemistry, and biotechnology. 3rd ed. Boca Raton: CRC Press; 2022.
  • Anonymous. Shen R. Health Food Regulatory System in Japan [Internet]. 2019 [cited 2025 Mar 13]. Available from: https://food.chemlinked.com/foodpedia/health-food-regulatory-system-japan
  • Anonymous. Türk Gıda Kodeksi Gıda Katkı Maddeleri Yönetmeliği. Available from: https://www.tarimorman.gov.tr/Konu/2024/TGK_Katki_Maddeleri_Yonetmeligi_Gida_K. Accessed date: October 23, 2024.
  • Anonymous. Gıdalarda kullanılabilecek bitkiler, mantarlar, algler ve likenler hakkında yönetmelik taslağı. Available from: https://www.tarimorman.gov.tr/GKGM/Sayfalar/Detay.aspx?TermStoreId=368e785b-af33-487d-a98d-c11d5495130b&TermSetId=c9118bad-41d2-40a8-9352-d3c5d954b355&TermId=23f6df2f-b835-4924-8e6c-97fc71cb8bee&UrlSuffix=467/Mevzuat-Taslagi-Tgk-Gidalarda-Kullanilabilecek-Bitkiler-Mantarlar-Algler-Ve-Likenler-Hakkinda-Yonetmelik. Accessed date: October 23, 2024.
  • Anonymous. Mevzuat Taslağı - TGK Yeni Gıdalar Yönetmeliği [Internet]. [cited 2025 Mar 13]. Available from: https://www.tarimorman.gov.tr/GKGM/Duyuru/600/Mevzuat-Taslagi-Tgk-Yeni-Gidalar-Yonetmeligi
  • Rahman KM. Food and high value products from microalgae: Market opportunities and challenges. In: Alam M, Xu JL, Wang Z, editors. Microalgae biotechnology for food, health and high value products. Singapore: Springer; 2020. p. 1–14.
  • Wang A, Alam M, Xu JL, Wang Z. Microalgae as a mainstream food ingredient: Demand and supply perspective. In: Alam M, Xu JL, Wang Z, editors. Microalgae biotechnology for food, health and high value products. Singapore: Springer; 2020. p. 17–32.
  • Tredici MR. Photobiology of microalgae mass cultures: Understanding the tools for the next green revolution. Biofuels 2010;1(1):143–162.
  • Anonymous. Ministry of Health, Labour and Welfare (MHLW). Food Safety in Japan [Internet]. 2019 Sep 6 [cited 2025 Mar 13]. Available from: https://www.mhlw.go.jp/english/topics/foodsafety/index.html
  • Nethravathy MU, Mehar JG, Mudliar SN, Shekh AY. Recent advances in microalgal bioactives for food, feed, and healthcare products: Commercial potential, market space, and sustainability. Compr Rev Food Sci Food Saf 2019;18(6):1882–1897.
  • Suali E, Sarbatly R. Conversion of microalgae to biofuel. Renew Sustain Energy Rev 2012;16(6):4316–4342.
  • Buono S, Langellotti AL, Martello A, Rinna F, Fogliano V. Functional ingredients from microalgae. Food Funct 2014;5(8):1669–1685.
  • Day AG, Brinkmann D, Franklin S, Espina K, Rudenko G, Roberts A, et al. Safety evaluation of a high-lipid algal biomass from Chlorella protothecoides. Regul Toxicol Pharmacol 2009;55(2):166–180.
  • Rogers EH, Hunter ES III, Moser VC, Phillips PM, Herkovits J, Muñoz L, et al. Potential developmental toxicity of anatoxin-a, a cyanobacterial toxin. J Appl Toxicol 2005;25(6):527–537.
  • Vichi S, Lavorini P, Funari E, Scardala S, Testai E. Contamination by Microcystis and microcystins of blue–green algae food supplements (BGAS) on the Italian market and possible risk for the exposed population. Food Chem Toxicol 2012;50(12):4493–4499.
  • James CA, Welham S, Rose P. Edible algae allergenicity – a short report. J Appl Phycol 2023;35(2):339–352.
  • Le T-M, Knulst AC, Röckmann H. Anaphylaxis to Spirulina confirmed by skin prick test with ingredients of Spirulina tablets. Food Chem Toxicol 2014;74:309–310.
  • Caporgno MP, Mathys A. Trends in microalgae incorporation into innovative food products with potential health benefits. Front Nutr 2018;5:58.
  • Borowitzka MA. High-value products from microalgae—their development and commercialization. J Appl Phycol 2013;25(5):743–756.
  • Charoonnart P, Taunt HN, Yang L, Webb C, Robinson C, Saksmerprome V, et al. Transgenic microalgae expressing double-stranded RNA as potential feed supplements for controlling white spot syndrome in shrimp aquaculture. Microorganisms 2023;11(8):1893.
  • Patel IK, Das A, Kumari R, Kajla S. Recent progress and challenges in CRISPR-Cas9 engineered algae and cyanobacteria. Algal Res 2023;71:103068.
  • Kamal AH, Mohd Hamidi NF, Zakaria MF, et al. Genetically engineered microalgae for enhanced bioactive compounds. Discov Appl Sci 2024;6:482.
  • Qv M, Dai D, Wu Q, Wang W, Li L, Zhu L. Metagenomic insight into the horizontal transfer mechanism of fluoroquinolone antibiotic resistance genes mediated by mobile genetic elements in microalgae-bacteria consortia. J Environ Manage 2025;380:124946.
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Gıda Hijyeni ve Teknolojisi
Bölüm ÇAĞRILI MAKALE / DERLEME
Yazarlar

Elif Ceren Çakıroğlu 0009-0001-5710-7402

Güzin İplikçioğlu Aral 0000-0001-6897-8222

Erken Görünüm Tarihi 13 Haziran 2025
Yayımlanma Tarihi 15 Haziran 2025
Gönderilme Tarihi 28 Ocak 2025
Kabul Tarihi 4 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 96 Sayı: 2

Kaynak Göster

Vancouver Çakıroğlu EC, İplikçioğlu Aral G. Microalgae as a new resource in the food industry. Vet Hekim Der Derg. 2025;96(2):165-78.

Veteriner Hekimler Derneği Dergisi açık erişimli bir dergi olup, derginin yayın modeli Budapeşte Erişim Girişimi (BOAI) bildirisine dayanmaktadır. Yayınlanan tüm içerik, çevrimiçi ve ücretsiz olarak sunulan Creative Commons CC BY-NC 4.0 lisansı altında lisanslanmıştır. Yazarlar, Veteriner Hekimler Derneği Dergisi'nde yayınlanan eserlerinin telif haklarını saklı tutarlar.


Veteriner Hekimler Derneği / Turkish Veterinary Medical Society