Research Article
BibTex RIS Cite

Afyonkarahisar'da Yetişen Sekiz Yabani Yenilebilir Bitkinin Antioksidan Aktivitesi ve Fitokimyasal Profili

Year 2025, Volume: 23 Issue: 1, 12 - 19, 11.05.2025
https://doi.org/10.24323/akademik-gida.1697162

Abstract

Bu çalışmada, Türkiye’nin Afyonkarahisar ilinde yetişen yabani yenilebilir bitkilerin yapraklarının antioksidan aktiviteleri, toplam fenolik içerikleri (TPC), toplam flavonoid içerikleri ve fenolik bileşenler araştırılmıştır. Antioksidan aktiviteler 2,2-difenil-1-pikrilhidrazil (DPPH), 2,2ˊ-azin-bis (3-etilbenz-tiazolin-6-sülfonik asit) diamonyum tuzu (ABTS) ve demir indirgeyici antioksidan güç (FRAP) analizleri ile ölçülürken, fenolik asitler ve flavonoidler HPLC ile tanımlanıp miktarları belirlenmiştir. Bu bitkiler Lactuca serriola L. (acı marul), Thymus vulgaris L. (kekik), Sinapis arvensis L. (hardal), Malva neglecta L. (ebegümeci), Amaranthus retroflexus L. (kızılbacak), Tragopogon longirostris bisch (tekesakalı), Taraxacum officinale (acıgünek) ve Chenopodium album'dur (sirken). Bitki yapraklarında fenolik asitler (gallik asit, ferulik asit, klorojenik asit, p-kumarik asit, ellagik asit, vanilik asit, kafeik asit, sinnamik asit, 4-hidroksibenzoik asit, 2,5-dihidroksibenzoik asit) ile flavonoidlerin (kateşin, apigenin, naringin, rutin ve kuersetin) miktarları belirlenmiştir. Tüm bitkiler antioksidan özellik göstermiş fakat Tragopogon longirostis bisch, Sinapis arvensis L. ve Thymus vulgaris L. diğerlerinden daha yüksek antioksidan aktivite değerine sahip olmuştur. En yüksek toplam fenolik madde içeriği (2.69mg/g) Tragopogon longirostis bisch’e, en yüksek toplam flavonoid içeriği (1.84mg/g) Amaranthus retroflexus’a aittir. Amaranthus retroflexus L. en yüksek gallik asit ve vanilik asid içeriğine sahip iken Malva neglecta L. en yüksek ferulik, klorojenik, ellagik ve sinamik asit içeriğine sahip olmuştur. Tragopogon longirostris bisch en yüksek p-kumarik asit, 4-hidroksibenzoik asit ve 2,5 dihidroksibenzoik asidi düzeyini sergilemiştir. Malva neglecta L.’nin en yüksek kateşin, apigenin ve kuersetin düzeyi, Thymus vulgaris L.’nin ise en yüksek naringin ve rutin içeriğine sahip olduğu görülmüştür. Bulgular, bu bitki yapraklarının insan diyetinde doğal antioksidan kaynakları olarak tüketilebileceğini göstermiştir.

References

  • [1] Ivanova, D., Gerova, D., Chervenkov, T., Yankova, T. (2005). Polyphenols and antioxidant capacity of Bulgarian medicinal plants. Journal of Ethnopharmacology, 96(1-2), 145-150.
  • [2] Rice-Evans, C., Miller, N., Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4), 152-159.
  • [3] Winkel-Shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology, 5(3), 218-223.
  • [4] Moure, A., Cruz, J M., Franco, D., Domı́nguez, J.M., Sineiro, J., Domı́nguez, H., Parajó, J.C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145-171.
  • [5] Carletti, P., Masi, A., Wonisch, A., Grill, D., Tausz, M., Ferretti, M. (2003). Changes in antioxidant and pigment pool dimensions in UV-B irradiated maize seedlings. Environmental and Experimental Botany, 50(2), 149-157.
  • [6] Mohammedi, Z., Atik, F. (2012). HPLC-UV Analysis and antioxidant potential of phenolic compounds from endemic shrub of arid environment Tamarix pauciovulata J. Gay. Journal of Life Sciences, 6(8), 883-891.
  • [7] Al-Laith, A. A., Alkhuzai, J., Freije, A. (2019). Assessment of antioxidant activities of three wild medicinal plants from Bahrain. Arabian Journal of Chemistry, 12(8), 2365-2371.
  • [8] Günbatan, T., Salihoğlu, E. M., Akaydın, S., Akaydın, G., Gurbuz, İ. (2023). Malva neglecta Wallr. bitkisinin kimotripsin, üreaz inhibe edici ve antioksidan aktivitesi. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi, 13(2), 459-468.
  • [9] Kolar, F. R., Kambhar, S. V., Kamble, V. S., Daphedar, A. B. (2024). Comparative examination of phenolic content, flavonoid content, and antioxidant efficacy of Chenopodium album L. and Chenopodium pumilio R. Br. İstanbul Journal of Pharmacy, 54(2), 165-174.
  • [10] Ivanov, I.G. (2014). Polyphenols content and antioxidant activities of Taraxacum officinale FH Wigg (dandelion) leaves. International Journal of Pharmacognosy and Phytochemical Research, 6, 889-893.
  • [11] Ao, T., Deb, C.R. (2019), Nutritional and antioxidant potential of some wild edible mushrooms of Nagaland, India. Journal of Food Science and Technology, 56(2), 1084-1089.
  • [12] Shen, D.D., Li, X., Qin, Y.L., Li, M.T., Han, Q.H., Zhou, J., Wu, D.T. (2019). Physicochemical properties, phenolic profiles, antioxidant capacities, and inhibitory effects on digestive enzymes of okra (Abelmoschus esculentus) fruit at different maturation stages. Journal of Food Science and Technology, 56(3), 1275-1286.
  • [13] Somkuwar, R.G., Bhange, M.A., Oulkar, D.P., Sharma, A.K., Shabeer, T.A. (2018). Estimation of polyphenols by using HPLC–DAD in red and white wine grape varieties grown under tropical conditions of India. Journal of Food Science and Technology, 55(12), 4994-5002.
  • [14] Jagtap, N.S., Wagh, R.V., Chatli, M.K., Kumar, P., Malav, O.P., Mehta, N. (2019). Optimisation of extraction protocol for Carica papaya L, to obtain phenolic rich phyto-extract with prospective application in chevon emulsion system. Journal of Food Science and Technology, 56(1), 71-82.
  • [15] Yalcin, S., Schreiner, M. (2018). Stabilities of tocopherols and phenolic compounds in virgin olive oil during thermal oxidation. Journal of Food Science and Technology, 55, 244-251.
  • [16] Ningappa, M. B., Dinesha, R., Srinivas, L. (2008). Antioxidant and free radical scavenging activities of polyphenol-enriched curry leaf (Murraya koenigii L.) extracts. Food Chemistry, 106(2), 720-728.
  • [17] Perea-Domínguez, X.P., Hernández-Gastelum, L.Z., Olivas-Olguin, H.R., Espinosa-Alonso, L.G., Valdez-Morales, M., Medina-Godoy, S. (2018). Phenolic composition of tomato varieties and an industrial tomato by-product: free, conjugated and bound phenolics and antioxidant activity. Journal of Food Science and Technology, 55, 3453-3461.
  • [18] Fellah, B., Bannour, M., Rocchetti, G., Lucini, L., Ferchichi, A. (2018). Phenolic profiling and antioxidant capacity in flowers, leaves and peels of Tunisian cultivars of Punica granatum L. Journal of Food Science and Technology, 55, 3606-3615.
  • [19] Yalcin, S., Basman, A. (2016). Effects of infrared treatment on tocopherols, total phenolics and antioxidant activity of soybean samples. Quality Assurance and Safety of Crops & Foods, 8(2),1-10.
  • [20] Hassanzadeh, Z., Hassanpour, H. (2018). Evaluation of physicochemical characteristics and antioxidant properties of Elaeagnus angustifolia L. Scientia Horticulturae, 238, 83-90.
  • [21] Orak, H.H. (2007). Total antioxidant activities, phenolics, anthocyanins, polyphenoloxidase activities of selected red grape cultivars and their correlations. Scientia Horticulturae, 111(3), 235-241.
  • [22] Hassanpour, H., Alizadeh, S. (2016). Evaluation of phenolic compound, antioxidant activities and antioxidant enzymes of barberry genotypes in Iran. Scientia Horticulturae, 200, 125-130.
  • [23] Brand-Williams, W., Cuvelier, M.E., Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30.
  • [24] Perez-Jimenez, J., Saura-Calixto, F. (2006). Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Research International, 39, 791-800.
  • [25] Re, R., Pellegrini, N., Proteggente, N., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26, 1231-123.
  • [26] Benzie, I.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.
  • [27] Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
  • [28] Dewanto, V., Wu, X., Adom, K.K., Liu, R.H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50, 3010-3014.
  • [29] Caponio, F., Alloggio, V., Gomes, T. (1999). Phenolic compounds of virgin olive oil: influence of paste preparation techniques. Food Chemistry, 64(2), 203-209.
  • [30] Liu, X., Ardo, S., Bunning, M., Parry, J., Zhou, K., Stushnoff, C., Kendall, P. (2007). Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L,) grown in Colorado. LWT, 40(3), 552-557.
  • [31] Chizzola, R., Michitsch, H., Franz, C. (2008). Antioxidative properties of Thymus vulgaris leaves: comparison of different extracts and essential oil chemotypes. Journal of Agricultural and Food Chemistry, 56(16), 6897-6904.
  • [32] Dauqan, E., Abdullah, A., Muin, N.M. (2017). Antioxidants and antibacterial activities of extract from thyme and mint leaves. Journal of Chemical and Pharmaceutical Research, 9(12), 104-110.
  • [33] Acıkara, Ö.B., Çitoglu, G.S., Çoban, T, (2013). Evaluation of antioxidant properties of some tragopogon species growing in Turkey. The Turkish Journal of Pharmaceutical Sciences, 10(3), 377-384.
  • [34] Zdravković, J., Aćamović-Đoković, G., Mladenović, J., Pavlović, R., Zdravković, M. (2014). Antioxidant capacity and contents of phenols, ascorbic acid, β-carotene and lycopene in lettuce. Hemijska Industrija, 68(2), 193-198.
  • [35] Dalar, A., Türker, M., Konczak, I. (2012). Antioxidant capacity and phenolic constituents of Malva neglecta Wallr, and Plantago lanceolata L, from Eastern Anatolia Region of Turkey. Journal of Herbal Medicine, 2(2), 42-51.
  • [36] Jaina, G.J., Settyb, S.R. (2018). Gallic acid and flavonoids of Amaranthus retroflexus MIT. International Journal of Pharmacy and Pharmaceutical Sciences, 4(2), 82–85.
  • [37] Khan, A.S., Arif, K., Munir, B., Kiran, S., Jalal, F., Qureshi, N., Tahir, M.A. (2019). Estimating total phenolics in Taraxacum officinale (L,) extracts. Polish Journal of Environmental Studies, 28(1), 497-501.
  • [38] Pandey, S., Gupta, R.K. (2014). Screening of nutritional, phytochemical, antioxidant and antibacterial activity of Chenopodium album (Bathua). Journal of Pharmacognosy and Phytochemistry, 3(3), 1-9.
  • [39] Köksal, E., Bursal, E., Gülçin, İ., Korkmaz, M., Çağlayan, C., Gören, A.C., Alwasel, S.H. (2017). Antioxidant activity and polyphenol content of Turkish thyme (Thymus vulgaris) monitored by liquid chromatography and tandem mass spectrometry. International Journal of Food Properties, 20(3), 514-525.

Antioxidant Activity and Phytochemical Profile of Eight Wild Edible Plants Grown in Afyonkarahisar, Türkiye

Year 2025, Volume: 23 Issue: 1, 12 - 19, 11.05.2025
https://doi.org/10.24323/akademik-gida.1697162

Abstract

In this study, the antioxidant activities, total phenolic content (TPC), total flavonoid content (TFC), and phenolic compounds in the leaves of wild edible plants, grown in Afyonkarahisar, Turkey were investigated. Antioxidant activities were measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2ˊ-azine-bis (3-ethylbenz-thiazoline-6-sulfonic acid) diammonium salt (ABTS), and ferric reducing antioxidant power (FRAP) assays, while phenolic acids and flavonoids were identified and quantified by high performance liquid chromatography. The plants included Lactuca serriola L. (bitter lettuce), Thymus vulgaris L. (thyme), Sinapis arvensis L. (mustard), Malva neglecta L. (hibiscus), Amaranthus retroflexus L. (redroot pigweed), Tragopogon longirostris bisch (goat’s beard), Taraxacum officinale (dandelion), and Chenopodium album (baconweed or lamb’s quarters). Phenolic acids, including gallic acid, ferulic acid, chlorogenic acid, p-coumaric acid, ellagic acid, vanillic acid, caffeic acid, cinnamic acid, 4-hydroxybenzoic acid, 2,5-dihydroxybenzoic acid and flavonoids including catechin, apigenin, naringin, rutin and quercetin amounts in plant leaves were determined. All plants showed antioxidant properties but Tragopogon longirostis bisch, Sinapis arvensis L., and Thymus vulgaris L. had higher antioxidant activity than the rest. The highest TPC (2.69 mg/g) belonged to Tragopogon longirostis bisch, and the highest TFC (1.84mg/g) belonged to Amaranthus retroflexus. Amaranthus retroflexus L. had the highest gallic acid and vanillic acid levels. Malva neglecta L. had the highest ferulic, chlorogenic, ellagic, and cinnamic acid contents. Tragopogon longirostris bisch had the highest p-coumaric acid, 4-hydroxybenzoic acid, and 2,5 dihydroxybenzoic acid levels. It was observed that Malva neglecta L. had the highest catechin, apigenin, and quercetin contents while Thymus vulgaris L. had the highest naringin and rutin levels. These results suggested these leaves could be consumed as the sources of natural antioxidants in human diet.

References

  • [1] Ivanova, D., Gerova, D., Chervenkov, T., Yankova, T. (2005). Polyphenols and antioxidant capacity of Bulgarian medicinal plants. Journal of Ethnopharmacology, 96(1-2), 145-150.
  • [2] Rice-Evans, C., Miller, N., Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4), 152-159.
  • [3] Winkel-Shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology, 5(3), 218-223.
  • [4] Moure, A., Cruz, J M., Franco, D., Domı́nguez, J.M., Sineiro, J., Domı́nguez, H., Parajó, J.C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145-171.
  • [5] Carletti, P., Masi, A., Wonisch, A., Grill, D., Tausz, M., Ferretti, M. (2003). Changes in antioxidant and pigment pool dimensions in UV-B irradiated maize seedlings. Environmental and Experimental Botany, 50(2), 149-157.
  • [6] Mohammedi, Z., Atik, F. (2012). HPLC-UV Analysis and antioxidant potential of phenolic compounds from endemic shrub of arid environment Tamarix pauciovulata J. Gay. Journal of Life Sciences, 6(8), 883-891.
  • [7] Al-Laith, A. A., Alkhuzai, J., Freije, A. (2019). Assessment of antioxidant activities of three wild medicinal plants from Bahrain. Arabian Journal of Chemistry, 12(8), 2365-2371.
  • [8] Günbatan, T., Salihoğlu, E. M., Akaydın, S., Akaydın, G., Gurbuz, İ. (2023). Malva neglecta Wallr. bitkisinin kimotripsin, üreaz inhibe edici ve antioksidan aktivitesi. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi, 13(2), 459-468.
  • [9] Kolar, F. R., Kambhar, S. V., Kamble, V. S., Daphedar, A. B. (2024). Comparative examination of phenolic content, flavonoid content, and antioxidant efficacy of Chenopodium album L. and Chenopodium pumilio R. Br. İstanbul Journal of Pharmacy, 54(2), 165-174.
  • [10] Ivanov, I.G. (2014). Polyphenols content and antioxidant activities of Taraxacum officinale FH Wigg (dandelion) leaves. International Journal of Pharmacognosy and Phytochemical Research, 6, 889-893.
  • [11] Ao, T., Deb, C.R. (2019), Nutritional and antioxidant potential of some wild edible mushrooms of Nagaland, India. Journal of Food Science and Technology, 56(2), 1084-1089.
  • [12] Shen, D.D., Li, X., Qin, Y.L., Li, M.T., Han, Q.H., Zhou, J., Wu, D.T. (2019). Physicochemical properties, phenolic profiles, antioxidant capacities, and inhibitory effects on digestive enzymes of okra (Abelmoschus esculentus) fruit at different maturation stages. Journal of Food Science and Technology, 56(3), 1275-1286.
  • [13] Somkuwar, R.G., Bhange, M.A., Oulkar, D.P., Sharma, A.K., Shabeer, T.A. (2018). Estimation of polyphenols by using HPLC–DAD in red and white wine grape varieties grown under tropical conditions of India. Journal of Food Science and Technology, 55(12), 4994-5002.
  • [14] Jagtap, N.S., Wagh, R.V., Chatli, M.K., Kumar, P., Malav, O.P., Mehta, N. (2019). Optimisation of extraction protocol for Carica papaya L, to obtain phenolic rich phyto-extract with prospective application in chevon emulsion system. Journal of Food Science and Technology, 56(1), 71-82.
  • [15] Yalcin, S., Schreiner, M. (2018). Stabilities of tocopherols and phenolic compounds in virgin olive oil during thermal oxidation. Journal of Food Science and Technology, 55, 244-251.
  • [16] Ningappa, M. B., Dinesha, R., Srinivas, L. (2008). Antioxidant and free radical scavenging activities of polyphenol-enriched curry leaf (Murraya koenigii L.) extracts. Food Chemistry, 106(2), 720-728.
  • [17] Perea-Domínguez, X.P., Hernández-Gastelum, L.Z., Olivas-Olguin, H.R., Espinosa-Alonso, L.G., Valdez-Morales, M., Medina-Godoy, S. (2018). Phenolic composition of tomato varieties and an industrial tomato by-product: free, conjugated and bound phenolics and antioxidant activity. Journal of Food Science and Technology, 55, 3453-3461.
  • [18] Fellah, B., Bannour, M., Rocchetti, G., Lucini, L., Ferchichi, A. (2018). Phenolic profiling and antioxidant capacity in flowers, leaves and peels of Tunisian cultivars of Punica granatum L. Journal of Food Science and Technology, 55, 3606-3615.
  • [19] Yalcin, S., Basman, A. (2016). Effects of infrared treatment on tocopherols, total phenolics and antioxidant activity of soybean samples. Quality Assurance and Safety of Crops & Foods, 8(2),1-10.
  • [20] Hassanzadeh, Z., Hassanpour, H. (2018). Evaluation of physicochemical characteristics and antioxidant properties of Elaeagnus angustifolia L. Scientia Horticulturae, 238, 83-90.
  • [21] Orak, H.H. (2007). Total antioxidant activities, phenolics, anthocyanins, polyphenoloxidase activities of selected red grape cultivars and their correlations. Scientia Horticulturae, 111(3), 235-241.
  • [22] Hassanpour, H., Alizadeh, S. (2016). Evaluation of phenolic compound, antioxidant activities and antioxidant enzymes of barberry genotypes in Iran. Scientia Horticulturae, 200, 125-130.
  • [23] Brand-Williams, W., Cuvelier, M.E., Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30.
  • [24] Perez-Jimenez, J., Saura-Calixto, F. (2006). Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Research International, 39, 791-800.
  • [25] Re, R., Pellegrini, N., Proteggente, N., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26, 1231-123.
  • [26] Benzie, I.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.
  • [27] Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
  • [28] Dewanto, V., Wu, X., Adom, K.K., Liu, R.H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50, 3010-3014.
  • [29] Caponio, F., Alloggio, V., Gomes, T. (1999). Phenolic compounds of virgin olive oil: influence of paste preparation techniques. Food Chemistry, 64(2), 203-209.
  • [30] Liu, X., Ardo, S., Bunning, M., Parry, J., Zhou, K., Stushnoff, C., Kendall, P. (2007). Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L,) grown in Colorado. LWT, 40(3), 552-557.
  • [31] Chizzola, R., Michitsch, H., Franz, C. (2008). Antioxidative properties of Thymus vulgaris leaves: comparison of different extracts and essential oil chemotypes. Journal of Agricultural and Food Chemistry, 56(16), 6897-6904.
  • [32] Dauqan, E., Abdullah, A., Muin, N.M. (2017). Antioxidants and antibacterial activities of extract from thyme and mint leaves. Journal of Chemical and Pharmaceutical Research, 9(12), 104-110.
  • [33] Acıkara, Ö.B., Çitoglu, G.S., Çoban, T, (2013). Evaluation of antioxidant properties of some tragopogon species growing in Turkey. The Turkish Journal of Pharmaceutical Sciences, 10(3), 377-384.
  • [34] Zdravković, J., Aćamović-Đoković, G., Mladenović, J., Pavlović, R., Zdravković, M. (2014). Antioxidant capacity and contents of phenols, ascorbic acid, β-carotene and lycopene in lettuce. Hemijska Industrija, 68(2), 193-198.
  • [35] Dalar, A., Türker, M., Konczak, I. (2012). Antioxidant capacity and phenolic constituents of Malva neglecta Wallr, and Plantago lanceolata L, from Eastern Anatolia Region of Turkey. Journal of Herbal Medicine, 2(2), 42-51.
  • [36] Jaina, G.J., Settyb, S.R. (2018). Gallic acid and flavonoids of Amaranthus retroflexus MIT. International Journal of Pharmacy and Pharmaceutical Sciences, 4(2), 82–85.
  • [37] Khan, A.S., Arif, K., Munir, B., Kiran, S., Jalal, F., Qureshi, N., Tahir, M.A. (2019). Estimating total phenolics in Taraxacum officinale (L,) extracts. Polish Journal of Environmental Studies, 28(1), 497-501.
  • [38] Pandey, S., Gupta, R.K. (2014). Screening of nutritional, phytochemical, antioxidant and antibacterial activity of Chenopodium album (Bathua). Journal of Pharmacognosy and Phytochemistry, 3(3), 1-9.
  • [39] Köksal, E., Bursal, E., Gülçin, İ., Korkmaz, M., Çağlayan, C., Gören, A.C., Alwasel, S.H. (2017). Antioxidant activity and polyphenol content of Turkish thyme (Thymus vulgaris) monitored by liquid chromatography and tandem mass spectrometry. International Journal of Food Properties, 20(3), 514-525.
There are 39 citations in total.

Details

Primary Language English
Subjects Food Engineering, Food Chemistry and Food Sensory Science
Journal Section Research Papers
Authors

Seda Yalçın 0000-0001-9741-0919

Cemal Kasnak 0000-0002-8312-7829

Recep Palamutoğlu 0000-0002-1168-081X

Ümmügülsüm Ünlü 0000-0002-9838-9792

Publication Date May 11, 2025
Submission Date November 18, 2024
Acceptance Date April 14, 2025
Published in Issue Year 2025 Volume: 23 Issue: 1

Cite

APA Yalçın, S., Kasnak, C., Palamutoğlu, R., Ünlü, Ü. (2025). Antioxidant Activity and Phytochemical Profile of Eight Wild Edible Plants Grown in Afyonkarahisar, Türkiye. Akademik Gıda, 23(1), 12-19. https://doi.org/10.24323/akademik-gida.1697162
AMA Yalçın S, Kasnak C, Palamutoğlu R, Ünlü Ü. Antioxidant Activity and Phytochemical Profile of Eight Wild Edible Plants Grown in Afyonkarahisar, Türkiye. Akademik Gıda. May 2025;23(1):12-19. doi:10.24323/akademik-gida.1697162
Chicago Yalçın, Seda, Cemal Kasnak, Recep Palamutoğlu, and Ümmügülsüm Ünlü. “Antioxidant Activity and Phytochemical Profile of Eight Wild Edible Plants Grown in Afyonkarahisar, Türkiye”. Akademik Gıda 23, no. 1 (May 2025): 12-19. https://doi.org/10.24323/akademik-gida.1697162.
EndNote Yalçın S, Kasnak C, Palamutoğlu R, Ünlü Ü (May 1, 2025) Antioxidant Activity and Phytochemical Profile of Eight Wild Edible Plants Grown in Afyonkarahisar, Türkiye. Akademik Gıda 23 1 12–19.
IEEE S. Yalçın, C. Kasnak, R. Palamutoğlu, and Ü. Ünlü, “Antioxidant Activity and Phytochemical Profile of Eight Wild Edible Plants Grown in Afyonkarahisar, Türkiye”, Akademik Gıda, vol. 23, no. 1, pp. 12–19, 2025, doi: 10.24323/akademik-gida.1697162.
ISNAD Yalçın, Seda et al. “Antioxidant Activity and Phytochemical Profile of Eight Wild Edible Plants Grown in Afyonkarahisar, Türkiye”. Akademik Gıda 23/1 (May 2025), 12-19. https://doi.org/10.24323/akademik-gida.1697162.
JAMA Yalçın S, Kasnak C, Palamutoğlu R, Ünlü Ü. Antioxidant Activity and Phytochemical Profile of Eight Wild Edible Plants Grown in Afyonkarahisar, Türkiye. Akademik Gıda. 2025;23:12–19.
MLA Yalçın, Seda et al. “Antioxidant Activity and Phytochemical Profile of Eight Wild Edible Plants Grown in Afyonkarahisar, Türkiye”. Akademik Gıda, vol. 23, no. 1, 2025, pp. 12-19, doi:10.24323/akademik-gida.1697162.
Vancouver Yalçın S, Kasnak C, Palamutoğlu R, Ünlü Ü. Antioxidant Activity and Phytochemical Profile of Eight Wild Edible Plants Grown in Afyonkarahisar, Türkiye. Akademik Gıda. 2025;23(1):12-9.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).