Research Article
BibTex RIS Cite

Algoritmik Medya İçeriği Farkındalık Ölçeğinin (AMCA-scale) Türkçe Uyarlaması ve Ölçek Faktörleri Arasındaki İlişkilerin Analizi

Year 2025, Issue: 48, 236 - 256, 28.04.2025
https://doi.org/10.31123/akil.1628894

Abstract

Bu çalışma, Zarouali, Boerman ve de Vreese (2021) tarafından geliştirilen Algoritmik Medya İçeriği Farkındalık Ölçeğinin (AMCA-scale) Türkçe’ye uyarlanmasını, ölçeğin Netflix, Instagram ve YouTube platformlarında test edilmesiyle kullanıcıların cevaplarının incelenmesini ve ölçek faktörleri arasındaki ilişkiyi tespit etmeyi amaçlamaktadır. Çeşitli medya üretim ve tüketim pratiklerini kapsayan dijital platformların algoritmik yapıları, kullanıcıların davranışsal verilerine dayalı biçimde içerik önerileri sunarak bireylerin karar ve rıza süreçlerine dahil olmaktadır. Dijital medya platformlarında içerik belirlemede algoritmalardan giderek daha fazla yararlanılması, kullanıcıların bu algoritmalara ve içeriklere dair farkındalığını keşfetmek ve ölçmek için standartlaşmış veri toplama araçlarının önemini ortaya koymaktadır. Bu süreçte de kullanıcıların bilgisi ve onayı olmadan yapılan veri toplama ve işleme faaliyetlerinin, kişisel mahremiyetin ihlali, toplumsal eşitsizlik gibi birçok soruna neden olmasından dolayı algoritmalara yönelik farkındalık, kullanıcıların daha bilinçli kararlar alabilmesi için önem taşımaktadır. Nitekim, bireylerin algoritmik süreçlere ilişkin farkındalık düzeylerini ölçmek ve bu farkındalığın farklı boyutlar arasındaki etkileşimlerini anlamak, algoritmaların risk tipolojilerine karşın kullanıcıların kendi verileri üzerinde daha fazla kontrol sahibi olması ve medya ve iletişim alanındaki algoritmik düzeni kullanıcının deneyimi üzerinden keşfetmeyi amaçlayan araştırmalara yol haritası sunması açısından potansiyel taşımaktadır. Araştırma kapsamında, ölçeğin dilsel eşdeğerlik çalışmaları yapılmış, geçerlik ve güvenirlik testleri uygulanmış, 386 katılımcıdan elde edilen verilerle faktör analizleri gerçekleştirilmiş ve ölçek faktörleri arasındaki ilişkiler korelasyon analizleriyle incelenmiştir. Çalışma bulguları, ölçeğin Türkçe versiyonunun geçerli ve güvenilir olduğunu ve faktörler arasındaki ilişkilerin anlamlı düzeyde olduğunu ortaya koymuştur. Ek olarak, algoritma farkındalığının platformlara özgü dinamiklerden etkilendiği tespit edilmiştir. Çalışma, Türkçe alan yazınında algoritma farkındalığı ve algoritma okuryazarlığı konusunda gerçekleştirilecek araştırmalara katkı sunmayı hedeflemektedir.

Ethical Statement

Bu çalışmanın etik açıdan onayı, Yeditepe Üniversitesi Beşerî ve Sosyal Bilimler Bilimsel Araştırma ve Yayın Etik Kurulu tarafından verilmiştir (Toplantı tarihi: 26.12.2023, Toplantı No: 46/2023).

References

  • Adomavicius, G., Bauman, K., Tuzhilin, A., & Unger, M. (2022). Context-aware recommender systems. F. Ricci, L. Rokach, B. Shapira (Eds.). Recommender systems handbook (ss. 211-250). Springer.
  • Beer, D. (2009). Power through the algorithm? Participatory web cultures and the technological unconscious. New Media & Society, 11(6), 985-1002. https://doi.org/10.1177/1461444809336551
  • Bernstein, M., Christin, A., Hancock, J., Hashimoto, T., Jia, C., Lam, M., Meister, N., Persily, N., Piccardi, T., & Saveski, M. (2023). Embedding societal values into social media algorithms. Journal of Online Trust and Safety, 2(1). https://doi.org/10.54501/jots.v2i1.148
  • Blazquez, D., & Domenech, J. (2018). Big Data sources and methods for social and economic analyses. Technological Forecasting and Social Change, 130, 99-113. https://doi.org/10.1016/j.techfore.2017.07.027
  • Boateng, G. O., Neilands, T. B., Frongillo, E. A., Melgar-Quiñonez, H. R., & Young, S. L. (2018). Best practices for developing and validating scales for health, social, and behavioral research: A primer. Frontiers in public health, 6, 149. https://doi.org/10.3389/fpubh.2018.00149
  • Bonett, D. G., & Wright, T. A. (2015). Cronbach’s alpha reliability: Interval estimation, hypothesis testing, and sample size planning. Journal of Organizational Behavior, 36(1), 3-15. https://doi.org/10.1002/job.1960
  • Bozdag, E. (2013). Bias in algorithmic filtering and personalization. Ethics and Information Technology, 15(3), 209-227. https://doi.org/10.1007/s10676-013-9321-6
  • Breidbach, C. F. (2024). Responsible algorithmic decision-making. Organizational Dynamics, 53(2), https://doi.org/10.1016/j.orgdyn.2024.101031
  • Brown, T. A. (2006). Confirmatory factor analysis for applied research. Guilford Press.
  • Bucher, T. (2018). If... then: Algorithmic power and politics. Oxford University Press.
  • Chandler, D., & Fuchs, C. (2019). Digital objects, digital subjects: Interdisciplinary perspectives on capitalism, labour and politics in the age of big data. University of Westminster Press.
  • Cotter, K. M. (2020). Critical algorithmic literacy: Power, epistemology, and platforms. [Doctoral dissertation]. Michigan State University.
  • Datareportal. (2024a). Digital 2024: Global overview report. https://datareportal.com/reports/digital-2024-global-overview-report
  • Datareportal. (2024b). Digital 2024: Turkey. https://datareportal.com/reports/digital-2024-turkey
  • Diakopoulos, N. (2015). Algorithmic accountability: Journalistic investigation of computational power structures. Digital Journalism, 3(3), 398-415. https://doi.org/10.1080/21670811.2014.976411
  • Diakopoulos, N. (2016). Accountability in algorithmic decision making. Communications of the ACM, 59(2), 56-62. https://doi.org/10.1145/2844110
  • Dogruel, L. (2021). What is algorithm literacy? A conceptualization and challenges regarding its empirical measurement. M. Taddicken, & C. Schumann (Eds.), Algorithms and communication (ss. 67-93). Infrastructure and Research for Social Sciences - GESIS. https:// doi.org/10.48541/dcr.v9.3
  • Dogruel, L., Facciorusso, D., & Stark, B. (2022). ‘I’m still the master of the machine.’ Internet users’ awareness of algorithmic decision-making and their perception of its effect on their autonomy. Information, Communication & Society, 25(9), 1311-1332. https://doi.org/10.1080/1369118X.2020.1863999
  • Dogruel, L., Masur, P., & Joeckel, S. (2022). Development and validation of an algorithm literacy scale for internet users. Communication Methods and Measures, 16(2), 115-133. https://doi.org/10.1080/19312458.2021.1968361
  • Erdem, B. K. (2021). Yapay zekânın medya ve yayıncılık alanına etkisi. TRT Akademi, 6(13), 896-903. https://doi.org/10.37679/trta.1002525
  • Eslami, M., Rickman, A., Vaccaro, K., Aleyasen, A., Vuong, A., Karahalios, K., Hamilton, K., & Sandvig, C. (2015). “I always assumed that I wasn’t really that close to [her]”: Reasoning about invisible algorithms in news feeds. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 153-162. https://doi.org/10.1145/2702123.2702556
  • Espinoza-Rojas, J., Siles, I., & Castelain, T. (2023). How using various platforms shapes awareness of algorithms. Behaviour & Information Technology, 42(9), 1422-1433. https://doi.org/10.1080/0144929X.2022.2078224
  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
  • Fouquaert, T., & Mechant, P. (2022). Making curation algorithms apparent: A case study of ‘Instawareness’ as a means to heighten awareness and understanding of Instagram’s algorithm. Information, Communication & Society, 25(12), 1769-1789. https://doi.org/10.1080/1369118X.2021.1883707
  • George, D., & Mallery, M. (2010). SPSS for Windows step by step: A simple guide and reference. Pearson.
  • Gillespie, T. (2014). The relevance of algorithms. https://direct.mit.edu/books/edited-volume/chapter-pdf/2273545/9780262319461_cai.pdf
  • Gran, A.-B., Booth, P., & Bucher, T. (2021). To be or not to be algorithm aware: A question of a new digital divide? Information, Communication & Society, 24(12), 1779-1796. https://doi.org/10.1080/1369118X.2020.1736124
  • Head, A. J., Fister, B., & MacMillan, M. (2020). Information literacy in the age of algorithms: student experiences with news and information, and the need for change. Project Information Literacy. https://eric.ed.gov/?id=ED605109
  • Herschel, R., & Miori, V. M. (2017). Ethics & big data. Technology in Society, 49, 31-36. https://doi.org/10.1016/j.techsoc.2017.03.003
  • Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
  • Hutcheson, G. D., & Sofroniou, N. (1999). The multivariate social scientist: Introductory statistics using generalized linear models. https://www.torrossa.com/gs/resourceProxy?an=4912571&publisher=FZ7200
  • Ilıcak Aydınalp, Ş. G. (2020). Halkla ilişkiler perspektifiyle yapay zekâ (AI). Turkish Studies, 15(4), 2283-2300. http://dx.doi.org/10.29228/TurkishStudies.42106
  • Iliadis, A., & Russo, F. (2016). Critical data studies: An introduction. Big Data & Society, 3(2). https://doi.org/10.1177/2053951716674238
  • Jöreskog, K. G., & Sörbom, D. (1993). Lisrel 8: User’s guide. Scientific Software.
  • Karakoç Keskin, K., Gül Ünlü, & Oğuz Kuş. (2023). Algoritmik farkındalık ve hayali olanaklar: İnsan hakları ihlallerinin dijital mekanizması üzerine düşünmek. M. A. Göngen, Y. Kesgin (Ed.). Medya ve insan hakları (ss.55-72). Kriter.
  • Keskin, E. K. (2024). Dijital medya ortamında rızanın algoritmik inşası: Eleştirel algoritma çalışmaları perspektifinde bir tartışma. Yeni Medya, 16, 329-353. https://doi.org/10.55609/yenimedya.1424585
  • Kline, R. B. (2011). 26 Convergence of structural equation modeling and multilevel modeling. M. Williams, W. P. Vogt (Eds.). The SAGE handbook of innovation in social research methods (ss. 562-589). SAGE Publications.
  • Koenig, A. (2020). The algorithms know me and I know them: Using student journals to uncover algorithmic literacy awareness. Computers and Composition, 58. https://doi.org/10.1016/j.compcom.2020.102611
  • Kraemer, F., Van Overveld, K., & Peterson, M. (2011). Is there an ethics of algorithms? Ethics and Information Technology, 13(3), 251-260. https://doi.org/10.1007/s10676-010-9233-7
  • Lin, W.-L., & Yao, G. (2023). Concurrent validity. F. Maggino (Ed.), Encyclopedia of quality of life and well-being research (ss. 1303-1304). Springer International Publishing.
  • Løkke, E. (2020). Mahremiyet dijital toplumda özel hayat. (D. Başak, Çev.). Koç Üniversitesi Yayınları.
  • Martin, K. (2019). Ethical implications and accountability of algorithms. Journal of Business Ethics, 160(4), 835-850. https://doi.org/10.1007/s10551-018-3921-3
  • Milano, S., Taddeo, M., & Floridi, L. (2020). Recommender systems and their ethical challenges. AI & SOCIETY, 35(4), 957-967. https://doi.org/10.1007/s00146-020-00950-y
  • Neuman, W. L. (2020). Toplumsal araştırma yöntemleri: Nitel ve nicel yaklaşımlar. (Ö. Akkaya, Çev.). Siyasal Kitabevi.
  • Orth, M. (2019). Profesör Katharina Zweig röportajı: İyi algoritma, kötü algoritma. https://www.deutschland.de/tr/topic/ekonomi/dijtallesme-algortimalar-hayatimizi-kolaylastiriyor-mu-yoksa-birer-tehlike-mi
  • Özel, S., & Özay, D. (2021). Yeni medya ortamlarında izleyici seçimi ve öneri algoritmaları: Netflix örneği. Ankara Üniversitesi İlef Dergisi, 8(2), 297-324. https://doi.org/10.24955/ilef.1023026
  • Proferes, N. (2017). Information flow solipsism in an exploratory study of beliefs about Twitter. Social Media + Society, 3(1). https://doi.org/10.1177/2056305117698493
  • Ptaszek, G. (2020). From algorithmic surveillance to algorithmic awareness: Media education in the context of new media economics and invisible technologies. S. Ratajski (Ed.). Media education as a challenge (ss. 59-71). Academy of Fine Arts in Warsaw.
  • Rader, E. (2017). Examining user surprise as a symptom of algorithmic filtering. International Journal of Human-Computer Studies, 98, 72-88. https://doi.org/10.1016/j.ijhcs.2016.10.005
  • Rea, L. M., & Parker, R. A. (2014). Designing and conducting survey research: A comprehensive guide. John Wiley & Sons.
  • Saurwein, F., & Spencer-Smith, C. (2021). Automated trouble: The role of algorithmic selection in harms on social media platforms. Media and Communication, 9(4), 222-233. https://doi.org/10.17645/mac.v9i4.4062
  • Shin, D., Kee, K. F., & Shin, E. Y. (2022). Algorithm awareness: Why user awareness is critical for personal privacy in the adoption of algorithmic platforms? International Journal of Information Management, 65. https://doi.org/10.1016/j.ijinfomgt.2022.102494
  • Siles, I., Valerio-Alfaro, L., & Meléndez-Moran, A. (2024). Learning to like TikTok . . . and not: Algorithm awareness as process. New Media & Society, 26(10), 5702-5718. https://doi.org/10.1177/14614448221138973
  • Sousa, V. D., & Rojjanasrirat, W. (2011). Translation, adaptation and validation of instruments or scales for use in cross‐cultural health care research: A clear and user‐friendly guideline. Journal of Evaluation in Clinical Practice, 17(2), 268-274. https://doi.org/10.1111/j.1365-2753.2010.01434.x
  • Spector, P. E. (1992). Summated rating scale construction: An introduction. Sage.
  • Statistics, L. (2018). Pearson’s product-moment correlation using SPSS Statistics. Statistical Tutorials and Software Guides. https://statistics.laerd.com/spss-tutorials/pearsons-product-moment-correlation-using-spss-statistics.php
  • Stevens, J. (2002). Applied multivariate statistics for the social sciences (C. 4). Routledge.
  • Stöckli, D. R., & Khobzi, H. (2021). Recommendation systems and convergence of online reviews: The type of product network matters! Decision Support Systems, 142. https://doi.org/10.1016/j.dss.2020.113475
  • Taylor, S. H., & Brisini, K. S. C. (2024). Parenting the TikTok algorithm: An algorithm awareness as process approach to online risks and opportunities. Computers in Human Behavior, 150. https://doi.org/10.1016/j.chb.2023.107975
  • Thorat, P. B., Goudar, R. M., & Barve, S. (2015). Survey on collaborative filtering, content-based filtering and hybrid recommendation system. International Journal of Computer Applications, 110(4), 31-36.
  • Treré, E. (2016). The dark side of digital politics: Understanding the algorithmic manufacturing of consent and the hindering of online dissidence. IDS bulletin, 47(1), 127-138.
  • TÜİK. (2024). Hanehalkı bilişim teknolojileri (BT) kullanım araştırması. https://data.tuik.gov.tr/Bulten/Index?p=Hanehalki-Bilisim-Teknolojileri-(BT)-Kullanim-Arastirmasi-2024-53492
  • Worthington, R. L., & Whittaker, T. A. (2006). Scale development research: A content analysis and recommendations for best practices. The Counseling Psychologist, 34(6), 806-838. https://doi.org/10.1177/0011000006288127
  • Yaşlıoğlu, M. M. (2017). Sosyal bilimlerde faktör analizi ve geçerlilik: Keşfedici ve doğrulayıcı faktör analizlerinin kullanılması. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 46, 74-85.
  • Yazıcıoğlu, Y., & Erdoğan, S. (2004). SPSS uygulamalı bilimsel araştırma yöntemleri. Detay Yayıncılık.
  • Zarouali, B., Boerman, S. C., & de Vreese, C. H. (2021). Is this recommended by an algorithm? The development and validation of the algorithmic media content awareness scale (AMCA-scale). Telematics and Informatics, 62. https://doi.org/10.1016/j.tele.2021.101607
  • Zwitter, A. (2014). Big data ethics. Big Data & Society, 1(2). https://doi.org/10.1177/2053951714559253

Turkish Adaptation of the Algorithmic Media Content Awareness Scale (AMCA-scale) and Analysis of the Relationships Between Scale Factors

Year 2025, Issue: 48, 236 - 256, 28.04.2025
https://doi.org/10.31123/akil.1628894

Abstract

The aim of the study is to adapt the Algorithmic Media Content Awareness Scale (AMCA-scale) developed by Zarouali, Boerman, and de Vreese (2021) into Turkish and test the scale on Netflix, Facebook and Netflix platforms to analyze users' responses and to observe the relationships between the scale factors. The algorithmic structures of digital platforms covering various media production and consumption practices involve individuals' decision and consent mechanisms by tailoring their behavioral data. The increasing use of algorithms to determine content raises the need for standardized tools to measure user awareness. In this process, understanding algorithms is important for users to make more informed decisions, as data collection and processing activities without the knowledge and consent of users cause many problems, such as violation of personal privacy and social inequality. Measuring individuals' awareness and understanding levels of algorithmic processes and the interactions between different dimensions of this awareness provide a roadmap for research to explore the algorithmic order in the field of media and communication. In the study context, linguistic equivalence studies of the scale were conducted, validity, reliability and factor analyses were conducted with the data obtained from 386 participants, and the relationships between the scale factors were examined through correlation analyses. The findings revealed that the Turkish version of the scale was valid and reliable and the relationships between the factors were significant. In addition, algorithm awareness was found to be affected by platform-specific dynamics. The study aims to enhance research on algorithm awareness and algorithm literacy in the Turkish literature.

References

  • Adomavicius, G., Bauman, K., Tuzhilin, A., & Unger, M. (2022). Context-aware recommender systems. F. Ricci, L. Rokach, B. Shapira (Eds.). Recommender systems handbook (ss. 211-250). Springer.
  • Beer, D. (2009). Power through the algorithm? Participatory web cultures and the technological unconscious. New Media & Society, 11(6), 985-1002. https://doi.org/10.1177/1461444809336551
  • Bernstein, M., Christin, A., Hancock, J., Hashimoto, T., Jia, C., Lam, M., Meister, N., Persily, N., Piccardi, T., & Saveski, M. (2023). Embedding societal values into social media algorithms. Journal of Online Trust and Safety, 2(1). https://doi.org/10.54501/jots.v2i1.148
  • Blazquez, D., & Domenech, J. (2018). Big Data sources and methods for social and economic analyses. Technological Forecasting and Social Change, 130, 99-113. https://doi.org/10.1016/j.techfore.2017.07.027
  • Boateng, G. O., Neilands, T. B., Frongillo, E. A., Melgar-Quiñonez, H. R., & Young, S. L. (2018). Best practices for developing and validating scales for health, social, and behavioral research: A primer. Frontiers in public health, 6, 149. https://doi.org/10.3389/fpubh.2018.00149
  • Bonett, D. G., & Wright, T. A. (2015). Cronbach’s alpha reliability: Interval estimation, hypothesis testing, and sample size planning. Journal of Organizational Behavior, 36(1), 3-15. https://doi.org/10.1002/job.1960
  • Bozdag, E. (2013). Bias in algorithmic filtering and personalization. Ethics and Information Technology, 15(3), 209-227. https://doi.org/10.1007/s10676-013-9321-6
  • Breidbach, C. F. (2024). Responsible algorithmic decision-making. Organizational Dynamics, 53(2), https://doi.org/10.1016/j.orgdyn.2024.101031
  • Brown, T. A. (2006). Confirmatory factor analysis for applied research. Guilford Press.
  • Bucher, T. (2018). If... then: Algorithmic power and politics. Oxford University Press.
  • Chandler, D., & Fuchs, C. (2019). Digital objects, digital subjects: Interdisciplinary perspectives on capitalism, labour and politics in the age of big data. University of Westminster Press.
  • Cotter, K. M. (2020). Critical algorithmic literacy: Power, epistemology, and platforms. [Doctoral dissertation]. Michigan State University.
  • Datareportal. (2024a). Digital 2024: Global overview report. https://datareportal.com/reports/digital-2024-global-overview-report
  • Datareportal. (2024b). Digital 2024: Turkey. https://datareportal.com/reports/digital-2024-turkey
  • Diakopoulos, N. (2015). Algorithmic accountability: Journalistic investigation of computational power structures. Digital Journalism, 3(3), 398-415. https://doi.org/10.1080/21670811.2014.976411
  • Diakopoulos, N. (2016). Accountability in algorithmic decision making. Communications of the ACM, 59(2), 56-62. https://doi.org/10.1145/2844110
  • Dogruel, L. (2021). What is algorithm literacy? A conceptualization and challenges regarding its empirical measurement. M. Taddicken, & C. Schumann (Eds.), Algorithms and communication (ss. 67-93). Infrastructure and Research for Social Sciences - GESIS. https:// doi.org/10.48541/dcr.v9.3
  • Dogruel, L., Facciorusso, D., & Stark, B. (2022). ‘I’m still the master of the machine.’ Internet users’ awareness of algorithmic decision-making and their perception of its effect on their autonomy. Information, Communication & Society, 25(9), 1311-1332. https://doi.org/10.1080/1369118X.2020.1863999
  • Dogruel, L., Masur, P., & Joeckel, S. (2022). Development and validation of an algorithm literacy scale for internet users. Communication Methods and Measures, 16(2), 115-133. https://doi.org/10.1080/19312458.2021.1968361
  • Erdem, B. K. (2021). Yapay zekânın medya ve yayıncılık alanına etkisi. TRT Akademi, 6(13), 896-903. https://doi.org/10.37679/trta.1002525
  • Eslami, M., Rickman, A., Vaccaro, K., Aleyasen, A., Vuong, A., Karahalios, K., Hamilton, K., & Sandvig, C. (2015). “I always assumed that I wasn’t really that close to [her]”: Reasoning about invisible algorithms in news feeds. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 153-162. https://doi.org/10.1145/2702123.2702556
  • Espinoza-Rojas, J., Siles, I., & Castelain, T. (2023). How using various platforms shapes awareness of algorithms. Behaviour & Information Technology, 42(9), 1422-1433. https://doi.org/10.1080/0144929X.2022.2078224
  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
  • Fouquaert, T., & Mechant, P. (2022). Making curation algorithms apparent: A case study of ‘Instawareness’ as a means to heighten awareness and understanding of Instagram’s algorithm. Information, Communication & Society, 25(12), 1769-1789. https://doi.org/10.1080/1369118X.2021.1883707
  • George, D., & Mallery, M. (2010). SPSS for Windows step by step: A simple guide and reference. Pearson.
  • Gillespie, T. (2014). The relevance of algorithms. https://direct.mit.edu/books/edited-volume/chapter-pdf/2273545/9780262319461_cai.pdf
  • Gran, A.-B., Booth, P., & Bucher, T. (2021). To be or not to be algorithm aware: A question of a new digital divide? Information, Communication & Society, 24(12), 1779-1796. https://doi.org/10.1080/1369118X.2020.1736124
  • Head, A. J., Fister, B., & MacMillan, M. (2020). Information literacy in the age of algorithms: student experiences with news and information, and the need for change. Project Information Literacy. https://eric.ed.gov/?id=ED605109
  • Herschel, R., & Miori, V. M. (2017). Ethics & big data. Technology in Society, 49, 31-36. https://doi.org/10.1016/j.techsoc.2017.03.003
  • Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
  • Hutcheson, G. D., & Sofroniou, N. (1999). The multivariate social scientist: Introductory statistics using generalized linear models. https://www.torrossa.com/gs/resourceProxy?an=4912571&publisher=FZ7200
  • Ilıcak Aydınalp, Ş. G. (2020). Halkla ilişkiler perspektifiyle yapay zekâ (AI). Turkish Studies, 15(4), 2283-2300. http://dx.doi.org/10.29228/TurkishStudies.42106
  • Iliadis, A., & Russo, F. (2016). Critical data studies: An introduction. Big Data & Society, 3(2). https://doi.org/10.1177/2053951716674238
  • Jöreskog, K. G., & Sörbom, D. (1993). Lisrel 8: User’s guide. Scientific Software.
  • Karakoç Keskin, K., Gül Ünlü, & Oğuz Kuş. (2023). Algoritmik farkındalık ve hayali olanaklar: İnsan hakları ihlallerinin dijital mekanizması üzerine düşünmek. M. A. Göngen, Y. Kesgin (Ed.). Medya ve insan hakları (ss.55-72). Kriter.
  • Keskin, E. K. (2024). Dijital medya ortamında rızanın algoritmik inşası: Eleştirel algoritma çalışmaları perspektifinde bir tartışma. Yeni Medya, 16, 329-353. https://doi.org/10.55609/yenimedya.1424585
  • Kline, R. B. (2011). 26 Convergence of structural equation modeling and multilevel modeling. M. Williams, W. P. Vogt (Eds.). The SAGE handbook of innovation in social research methods (ss. 562-589). SAGE Publications.
  • Koenig, A. (2020). The algorithms know me and I know them: Using student journals to uncover algorithmic literacy awareness. Computers and Composition, 58. https://doi.org/10.1016/j.compcom.2020.102611
  • Kraemer, F., Van Overveld, K., & Peterson, M. (2011). Is there an ethics of algorithms? Ethics and Information Technology, 13(3), 251-260. https://doi.org/10.1007/s10676-010-9233-7
  • Lin, W.-L., & Yao, G. (2023). Concurrent validity. F. Maggino (Ed.), Encyclopedia of quality of life and well-being research (ss. 1303-1304). Springer International Publishing.
  • Løkke, E. (2020). Mahremiyet dijital toplumda özel hayat. (D. Başak, Çev.). Koç Üniversitesi Yayınları.
  • Martin, K. (2019). Ethical implications and accountability of algorithms. Journal of Business Ethics, 160(4), 835-850. https://doi.org/10.1007/s10551-018-3921-3
  • Milano, S., Taddeo, M., & Floridi, L. (2020). Recommender systems and their ethical challenges. AI & SOCIETY, 35(4), 957-967. https://doi.org/10.1007/s00146-020-00950-y
  • Neuman, W. L. (2020). Toplumsal araştırma yöntemleri: Nitel ve nicel yaklaşımlar. (Ö. Akkaya, Çev.). Siyasal Kitabevi.
  • Orth, M. (2019). Profesör Katharina Zweig röportajı: İyi algoritma, kötü algoritma. https://www.deutschland.de/tr/topic/ekonomi/dijtallesme-algortimalar-hayatimizi-kolaylastiriyor-mu-yoksa-birer-tehlike-mi
  • Özel, S., & Özay, D. (2021). Yeni medya ortamlarında izleyici seçimi ve öneri algoritmaları: Netflix örneği. Ankara Üniversitesi İlef Dergisi, 8(2), 297-324. https://doi.org/10.24955/ilef.1023026
  • Proferes, N. (2017). Information flow solipsism in an exploratory study of beliefs about Twitter. Social Media + Society, 3(1). https://doi.org/10.1177/2056305117698493
  • Ptaszek, G. (2020). From algorithmic surveillance to algorithmic awareness: Media education in the context of new media economics and invisible technologies. S. Ratajski (Ed.). Media education as a challenge (ss. 59-71). Academy of Fine Arts in Warsaw.
  • Rader, E. (2017). Examining user surprise as a symptom of algorithmic filtering. International Journal of Human-Computer Studies, 98, 72-88. https://doi.org/10.1016/j.ijhcs.2016.10.005
  • Rea, L. M., & Parker, R. A. (2014). Designing and conducting survey research: A comprehensive guide. John Wiley & Sons.
  • Saurwein, F., & Spencer-Smith, C. (2021). Automated trouble: The role of algorithmic selection in harms on social media platforms. Media and Communication, 9(4), 222-233. https://doi.org/10.17645/mac.v9i4.4062
  • Shin, D., Kee, K. F., & Shin, E. Y. (2022). Algorithm awareness: Why user awareness is critical for personal privacy in the adoption of algorithmic platforms? International Journal of Information Management, 65. https://doi.org/10.1016/j.ijinfomgt.2022.102494
  • Siles, I., Valerio-Alfaro, L., & Meléndez-Moran, A. (2024). Learning to like TikTok . . . and not: Algorithm awareness as process. New Media & Society, 26(10), 5702-5718. https://doi.org/10.1177/14614448221138973
  • Sousa, V. D., & Rojjanasrirat, W. (2011). Translation, adaptation and validation of instruments or scales for use in cross‐cultural health care research: A clear and user‐friendly guideline. Journal of Evaluation in Clinical Practice, 17(2), 268-274. https://doi.org/10.1111/j.1365-2753.2010.01434.x
  • Spector, P. E. (1992). Summated rating scale construction: An introduction. Sage.
  • Statistics, L. (2018). Pearson’s product-moment correlation using SPSS Statistics. Statistical Tutorials and Software Guides. https://statistics.laerd.com/spss-tutorials/pearsons-product-moment-correlation-using-spss-statistics.php
  • Stevens, J. (2002). Applied multivariate statistics for the social sciences (C. 4). Routledge.
  • Stöckli, D. R., & Khobzi, H. (2021). Recommendation systems and convergence of online reviews: The type of product network matters! Decision Support Systems, 142. https://doi.org/10.1016/j.dss.2020.113475
  • Taylor, S. H., & Brisini, K. S. C. (2024). Parenting the TikTok algorithm: An algorithm awareness as process approach to online risks and opportunities. Computers in Human Behavior, 150. https://doi.org/10.1016/j.chb.2023.107975
  • Thorat, P. B., Goudar, R. M., & Barve, S. (2015). Survey on collaborative filtering, content-based filtering and hybrid recommendation system. International Journal of Computer Applications, 110(4), 31-36.
  • Treré, E. (2016). The dark side of digital politics: Understanding the algorithmic manufacturing of consent and the hindering of online dissidence. IDS bulletin, 47(1), 127-138.
  • TÜİK. (2024). Hanehalkı bilişim teknolojileri (BT) kullanım araştırması. https://data.tuik.gov.tr/Bulten/Index?p=Hanehalki-Bilisim-Teknolojileri-(BT)-Kullanim-Arastirmasi-2024-53492
  • Worthington, R. L., & Whittaker, T. A. (2006). Scale development research: A content analysis and recommendations for best practices. The Counseling Psychologist, 34(6), 806-838. https://doi.org/10.1177/0011000006288127
  • Yaşlıoğlu, M. M. (2017). Sosyal bilimlerde faktör analizi ve geçerlilik: Keşfedici ve doğrulayıcı faktör analizlerinin kullanılması. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 46, 74-85.
  • Yazıcıoğlu, Y., & Erdoğan, S. (2004). SPSS uygulamalı bilimsel araştırma yöntemleri. Detay Yayıncılık.
  • Zarouali, B., Boerman, S. C., & de Vreese, C. H. (2021). Is this recommended by an algorithm? The development and validation of the algorithmic media content awareness scale (AMCA-scale). Telematics and Informatics, 62. https://doi.org/10.1016/j.tele.2021.101607
  • Zwitter, A. (2014). Big data ethics. Big Data & Society, 1(2). https://doi.org/10.1177/2053951714559253
There are 67 citations in total.

Details

Primary Language Turkish
Subjects Communication and Media Studies (Other)
Journal Section Research Article
Authors

Elif Karakoç Keskin 0000-0002-2831-2247

Ege Simge Demirel 0000-0002-7673-5711

Publication Date April 28, 2025
Submission Date January 29, 2025
Acceptance Date March 30, 2025
Published in Issue Year 2025 Issue: 48

Cite

APA Karakoç Keskin, E., & Demirel, E. S. (2025). Algoritmik Medya İçeriği Farkındalık Ölçeğinin (AMCA-scale) Türkçe Uyarlaması ve Ölçek Faktörleri Arasındaki İlişkilerin Analizi. Akdeniz Üniversitesi İletişim Fakültesi Dergisi(48), 236-256. https://doi.org/10.31123/akil.1628894

3328033281

Journal of Akdeniz University Faculty of Communication is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC-BY-NC).