Research Article
BibTex RIS Cite
Year 2025, Volume: 74 Issue: 2, 191 - 199, 19.06.2025
https://doi.org/10.31801/cfsuasmas.1448617

Abstract

References

  • Bartoszewicz, A., Das, P., Gła̧b, S., On matrix summability of spliced sequences and A-density of points, Linear Algebra Appl., 487 (2015), 22–42. https://doi.org/10.1016/j.laa.2015.08.031.
  • Bose, K., Das, P., Sengupta, S., On spliced sequences and the density of points with respect to a matrix constructed by using a weight function, Ukrainian Mathematical Journal, 71 (2020), 1359–1374. https://doi.org/10.1007/s11253-020-01720-1.
  • Gökhan, A., Çolak, R., Mursaleen, M., Some matrix transformation and generalized core of double sequences, Mathematical and Computer Modelling, 49 (2009), 1721–1731. https://doi.org/10.1016/j.mcm.2008.12.002.
  • Hamilton, H. J., Transformations of multiple sequences, Duke Mathematical Journal, 2 (1936), 29–60.
  • Mursaleen, E., Osama, H. H., Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003), 223–231.
  • Osikiewicz, J. A., Summability of spliced sequences, Rocky Mountain J. Math., 35 (2005), 977–996.
  • Patterson, R. F., Analogues of some fundamental theorems of summability theory, International Journal of Mathematics and Mathematical Sciences, 23 (2000), 1–9.
  • Patterson, R. F., Lemma, M., Four dimensional matrix characterization of double oscillation via RH-conservative and RH-multiplicative matrices, Cent. Eur. J. Math., 6 (2008), 581–594. https://doi.org/10.2478/s11533-008-0043-7.
  • Pringsheim, A., On the theory of doubly infinite sequences of numbers, Math. Ann., 53 (1900), 289–321.
  • Robinson, G. M., Divergent double sequences and series, Transactions of the American Mathematical Society, 28 (1926), 50–73.
  • Ünver, M., Abel summability in topological spaces, Monatshefte f¨ur Mathematik, 178 (2015), 633–643. https://doi.org/10.1007/s00605-014-0717-0.
  • Ünver, M., Khan, M. K., Orhan, C., A-distributional summability in topological spaces, Positivity, 18 (2014), 131–145. https://doi.org/10.1007/s11117-013-0235-7.
  • Yardımcı, Ş., Gülfırat, M., Spliced sequences and summability with a rate, Positivity 27(17) (2023). https://doi.org/10.1007/s11117-023-00970-0.
  • Yurdakadim, T., Ünver, M., Some results concerning the summability of spliced sequences, Turk. J. Math., 40 (2016), 1134–1143. https://doi.org/10.3906/mat-1508-34.

Summability of spliced double sequences

Year 2025, Volume: 74 Issue: 2, 191 - 199, 19.06.2025
https://doi.org/10.31801/cfsuasmas.1448617

Abstract

In this paper, we introduce spliced double sequences and give the summability of this new notion by using four dimensional matrices. Note that there are some examples which show the effectiveness of spliced double sequences in summability theory.

References

  • Bartoszewicz, A., Das, P., Gła̧b, S., On matrix summability of spliced sequences and A-density of points, Linear Algebra Appl., 487 (2015), 22–42. https://doi.org/10.1016/j.laa.2015.08.031.
  • Bose, K., Das, P., Sengupta, S., On spliced sequences and the density of points with respect to a matrix constructed by using a weight function, Ukrainian Mathematical Journal, 71 (2020), 1359–1374. https://doi.org/10.1007/s11253-020-01720-1.
  • Gökhan, A., Çolak, R., Mursaleen, M., Some matrix transformation and generalized core of double sequences, Mathematical and Computer Modelling, 49 (2009), 1721–1731. https://doi.org/10.1016/j.mcm.2008.12.002.
  • Hamilton, H. J., Transformations of multiple sequences, Duke Mathematical Journal, 2 (1936), 29–60.
  • Mursaleen, E., Osama, H. H., Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003), 223–231.
  • Osikiewicz, J. A., Summability of spliced sequences, Rocky Mountain J. Math., 35 (2005), 977–996.
  • Patterson, R. F., Analogues of some fundamental theorems of summability theory, International Journal of Mathematics and Mathematical Sciences, 23 (2000), 1–9.
  • Patterson, R. F., Lemma, M., Four dimensional matrix characterization of double oscillation via RH-conservative and RH-multiplicative matrices, Cent. Eur. J. Math., 6 (2008), 581–594. https://doi.org/10.2478/s11533-008-0043-7.
  • Pringsheim, A., On the theory of doubly infinite sequences of numbers, Math. Ann., 53 (1900), 289–321.
  • Robinson, G. M., Divergent double sequences and series, Transactions of the American Mathematical Society, 28 (1926), 50–73.
  • Ünver, M., Abel summability in topological spaces, Monatshefte f¨ur Mathematik, 178 (2015), 633–643. https://doi.org/10.1007/s00605-014-0717-0.
  • Ünver, M., Khan, M. K., Orhan, C., A-distributional summability in topological spaces, Positivity, 18 (2014), 131–145. https://doi.org/10.1007/s11117-013-0235-7.
  • Yardımcı, Ş., Gülfırat, M., Spliced sequences and summability with a rate, Positivity 27(17) (2023). https://doi.org/10.1007/s11117-023-00970-0.
  • Yurdakadim, T., Ünver, M., Some results concerning the summability of spliced sequences, Turk. J. Math., 40 (2016), 1134–1143. https://doi.org/10.3906/mat-1508-34.
There are 14 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Research Articles
Authors

Emre Taş 0000-0002-6569-626X

Sevcan Demirkale 0000-0003-0739-5044

Publication Date June 19, 2025
Submission Date March 7, 2024
Acceptance Date January 23, 2025
Published in Issue Year 2025 Volume: 74 Issue: 2

Cite

APA Taş, E., & Demirkale, S. (2025). Summability of spliced double sequences. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 74(2), 191-199. https://doi.org/10.31801/cfsuasmas.1448617
AMA Taş E, Demirkale S. Summability of spliced double sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2025;74(2):191-199. doi:10.31801/cfsuasmas.1448617
Chicago Taş, Emre, and Sevcan Demirkale. “Summability of Spliced Double Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74, no. 2 (June 2025): 191-99. https://doi.org/10.31801/cfsuasmas.1448617.
EndNote Taş E, Demirkale S (June 1, 2025) Summability of spliced double sequences. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74 2 191–199.
IEEE E. Taş and S. Demirkale, “Summability of spliced double sequences”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 74, no. 2, pp. 191–199, 2025, doi: 10.31801/cfsuasmas.1448617.
ISNAD Taş, Emre - Demirkale, Sevcan. “Summability of Spliced Double Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74/2 (June 2025), 191-199. https://doi.org/10.31801/cfsuasmas.1448617.
JAMA Taş E, Demirkale S. Summability of spliced double sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74:191–199.
MLA Taş, Emre and Sevcan Demirkale. “Summability of Spliced Double Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 74, no. 2, 2025, pp. 191-9, doi:10.31801/cfsuasmas.1448617.
Vancouver Taş E, Demirkale S. Summability of spliced double sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74(2):191-9.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.