Research Article
BibTex RIS Cite
Year 2025, Volume: 6 Issue: 2, 182 - 195, 30.07.2025
https://doi.org/10.54974/fcmathsci.1643355

Abstract

References

  • Ashraf M., On symmetric bi-derivations in rings, Rendiconti dell’Istituto di Matematica dell’Universit`a di Trieste, 31, 25-36, 1999.
  • Ashraf M., Rehman N., On derivations and commutativity in prime rings, East-West Journal of Mathematics, 3(1), 87-91, 2001.
  • Ashraf M., Ali A., Rani R., On generalized derivations of prime rings, Southeast Asian Bulletin of Mathematics, 29, 669-675, 2005.
  • Çelik M., Koç Söğütçü E., Multiplicative generalized derivations acting on the semiprime ideals of the ring, International Journal of Open Problems in Computer Science and Mathematics, 17(3), 44-56, 2024.
  • Daif M.N., Bell H.E., Remarks on derivations on semiprime rings, International Journal of Mathematics and Mathematical Sciences, 15(1), 205-206, 1992.
  • Koç Söğütçü E., Gölbaşı Ö., Some results on Lie ideals with symmetric reverse bi-derivations in semiprime rings I, Facta Universitatis, Series: Mathematics and Informatics, 36(2), 309-319, 2021.
  • Koç Söğütçü E., Gölbaşı Ö., Ünalan H., Some results on Lie ideals with symmetric reverse biderivations in semiprime rings II, Bulletin of the International Mathematical Virtual Institute, 12(3), 477-485, 2022.
  • Maksa G., A remark on symmetric biadditive functions having nonnegative diagonalization, Glasnik Matematicki, 15(35), 279-282, 1980.
  • Maksa G., On the trace of symmetric bi-derivations, Comptes Rendus Math´ematique Representation Acad´emie des Sciences Canada, 9, 303-307, 1987.
  • Posner E.C., Derivations in prime rings, Proceedings of the American Mathematical Society, 8, 1093- 1100, 1957.
  • Reddy C.J., Rao G.V., Reddy K.M., Symmetric left bi-derivations in semiprime rings, IOSR Journal of Mathematics, 11(5), 25-26, 2015.
  • Vukman J., Two results concerning symmetric bi-derivations on prime rings, Aequationes Mathematicae, 40, 181-189, 1990.

Semiprime Ideal of Rings with Symmetric Bi-Derivations

Year 2025, Volume: 6 Issue: 2, 182 - 195, 30.07.2025
https://doi.org/10.54974/fcmathsci.1643355

Abstract

Let Ω be a ring with ℘ a semiprime ideal of Ω, I an ideal of Ω, Δ ∶ Ω × Ω → Ω a symmetric bi-derivation and δ be the trace of Δ. In the present paper, we shall prove that δ is a ℘-commuting map on I if any one of the following holds: i. δ(σ) ○ κ ∈ ℘, ii. δ([σ, κ]) ± [δ(σ), κ] ∈ ℘, iii. δ(σ○κ)±(δ(σ)○κ) ∈ ℘, iv. δ([σ, κ])±δ(σ)○κ ∈ ℘, v. δ(σ○κ)±[δ(σ), κ] ∈ ℘, vi. δ(σ)○κ±[δ(κ), σ] ∈ ℘, vii. δ([σ, κ]) ± δ(σ) ○ κ − [δ(κ), σ] ∈ ℘, viii. δ([σ, κ]) ± [δ(σ), κ] + [δ(κ), σ] ∈ ℘, ix. Δ(σ, κκ3) ±Δ(σ, κ)κ3 ∈ ℘, x. Δ(δ(σ), σ) ∈ ℘, xi. δ(δ(σ)) = g(σ), xii. δ(σ)κ ± σg(κ) ∈ ℘, xiii. [δ(σ), κ] ± [g(κ), σ] ∈ ℘, xiv. δ(σ) ○ κ ± (σ ○ g(κ)) ∈ ℘, xv. [δ(σ), κ] ± (σ ○ g(κ)) ∈ ℘, xvi. δ(σ) ○ κ ± [g(κ), σ] ∈ ℘ for all σ, κ ∈ I where G ∶ ℵ × ℵ → ℵ is a symmetric bi-derivation such that g is the trace of G.

Ethical Statement

The authors declare that the materials and methods used in their study do not require ethical committee and/or legal special permission

References

  • Ashraf M., On symmetric bi-derivations in rings, Rendiconti dell’Istituto di Matematica dell’Universit`a di Trieste, 31, 25-36, 1999.
  • Ashraf M., Rehman N., On derivations and commutativity in prime rings, East-West Journal of Mathematics, 3(1), 87-91, 2001.
  • Ashraf M., Ali A., Rani R., On generalized derivations of prime rings, Southeast Asian Bulletin of Mathematics, 29, 669-675, 2005.
  • Çelik M., Koç Söğütçü E., Multiplicative generalized derivations acting on the semiprime ideals of the ring, International Journal of Open Problems in Computer Science and Mathematics, 17(3), 44-56, 2024.
  • Daif M.N., Bell H.E., Remarks on derivations on semiprime rings, International Journal of Mathematics and Mathematical Sciences, 15(1), 205-206, 1992.
  • Koç Söğütçü E., Gölbaşı Ö., Some results on Lie ideals with symmetric reverse bi-derivations in semiprime rings I, Facta Universitatis, Series: Mathematics and Informatics, 36(2), 309-319, 2021.
  • Koç Söğütçü E., Gölbaşı Ö., Ünalan H., Some results on Lie ideals with symmetric reverse biderivations in semiprime rings II, Bulletin of the International Mathematical Virtual Institute, 12(3), 477-485, 2022.
  • Maksa G., A remark on symmetric biadditive functions having nonnegative diagonalization, Glasnik Matematicki, 15(35), 279-282, 1980.
  • Maksa G., On the trace of symmetric bi-derivations, Comptes Rendus Math´ematique Representation Acad´emie des Sciences Canada, 9, 303-307, 1987.
  • Posner E.C., Derivations in prime rings, Proceedings of the American Mathematical Society, 8, 1093- 1100, 1957.
  • Reddy C.J., Rao G.V., Reddy K.M., Symmetric left bi-derivations in semiprime rings, IOSR Journal of Mathematics, 11(5), 25-26, 2015.
  • Vukman J., Two results concerning symmetric bi-derivations on prime rings, Aequationes Mathematicae, 40, 181-189, 1990.
There are 12 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Articles
Authors

Emine Koç Sögütcü 0000-0002-8328-4293

Oznur Golbasi 0000-0002-9338-6170

Publication Date July 30, 2025
Submission Date February 19, 2025
Acceptance Date May 26, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

19113 FCMS is licensed under the Creative Commons Attribution 4.0 International Public License.