Research Article
BibTex RIS Cite
Year 2025, Early Access, 1 - 16
https://doi.org/10.15672/hujms.1563103

Abstract

References

  • [1] R. P. Agarwal and P. J. Y. Wong, Advanced Topics in Difference Equations, Kluwer Academic Publishers Group, Dordrecht, 1997.

On Oscillatory First Order Nonautonomous Functional Difference Systems

Year 2025, Early Access, 1 - 16
https://doi.org/10.15672/hujms.1563103

Abstract

\begin{abstract}
In this work, an illustrative discussion has been made on sufficient conditions under which all vector solutions of first order 2-dim nonautonomous neutral delay difference systems of the form
$$\Delta \left[%
\begin{array}{c}
u(\theta)+b(\theta)u(\theta-\kappa)\\
v(\theta)+b(\theta)v(\theta-\kappa) \\
\end{array}%
\right]= \left[%
\begin{array}{cc}
a_{1}(\theta) & a_{2}(\theta) \\
a_{3}(\theta) & a_{4}(\theta) \\
\end{array}%
\right]\left[%
\begin{array}{c}
g_1(u(\theta-\gamma))\\
g_2(v(\theta-\eta)) \\
\end{array}%
\right]+\left[%
\begin{array}{c}
\varphi_1(\theta)\\
\varphi_2(\theta) \\
\end{array}%
\right], \theta\geq\rho$$
are oscillatory, where $\kappa>0,$ $\gamma\geq 0, \eta\geq 0$ are integers, $a_{j}(\theta), j=1,2,3,4, b(\theta), \varphi_{1}(\theta),$ $\varphi_{2}(\theta)$ are sequences of real numbers for $\theta\in\mathbb{N}(\theta_{0})$ and $g_1, g_2\in\mathcal{C}(\mathbb{R}, \mathbb{R})$ are nondecreasing with the properties $\phi g_1(\phi)>0, \psi g_2(\psi)>0$ for $\phi\neq 0, \psi\neq 0.$ We verify our results with the examples.
\end{abstract}

References

  • [1] R. P. Agarwal and P. J. Y. Wong, Advanced Topics in Difference Equations, Kluwer Academic Publishers Group, Dordrecht, 1997.
There are 1 citations in total.

Details

Primary Language English
Subjects Ordinary Differential Equations, Difference Equations and Dynamical Systems
Journal Section Mathematics
Authors

Sunita Das 0000-0002-1661-3560

Arun Kumar Tripathy 0000-0002-5417-9064

Early Pub Date January 27, 2025
Publication Date
Submission Date October 7, 2024
Acceptance Date January 12, 2025
Published in Issue Year 2025 Early Access

Cite

APA Das, S., & Tripathy, A. K. (2025). On Oscillatory First Order Nonautonomous Functional Difference Systems. Hacettepe Journal of Mathematics and Statistics1-16. https://doi.org/10.15672/hujms.1563103
AMA Das S, Tripathy AK. On Oscillatory First Order Nonautonomous Functional Difference Systems. Hacettepe Journal of Mathematics and Statistics. Published online January 1, 2025:1-16. doi:10.15672/hujms.1563103
Chicago Das, Sunita, and Arun Kumar Tripathy. “On Oscillatory First Order Nonautonomous Functional Difference Systems”. Hacettepe Journal of Mathematics and Statistics, January (January 2025), 1-16. https://doi.org/10.15672/hujms.1563103.
EndNote Das S, Tripathy AK (January 1, 2025) On Oscillatory First Order Nonautonomous Functional Difference Systems. Hacettepe Journal of Mathematics and Statistics 1–16.
IEEE S. Das and A. K. Tripathy, “On Oscillatory First Order Nonautonomous Functional Difference Systems”, Hacettepe Journal of Mathematics and Statistics, pp. 1–16, January 2025, doi: 10.15672/hujms.1563103.
ISNAD Das, Sunita - Tripathy, Arun Kumar. “On Oscillatory First Order Nonautonomous Functional Difference Systems”. Hacettepe Journal of Mathematics and Statistics. January 2025. 1-16. https://doi.org/10.15672/hujms.1563103.
JAMA Das S, Tripathy AK. On Oscillatory First Order Nonautonomous Functional Difference Systems. Hacettepe Journal of Mathematics and Statistics. 2025;:1–16.
MLA Das, Sunita and Arun Kumar Tripathy. “On Oscillatory First Order Nonautonomous Functional Difference Systems”. Hacettepe Journal of Mathematics and Statistics, 2025, pp. 1-16, doi:10.15672/hujms.1563103.
Vancouver Das S, Tripathy AK. On Oscillatory First Order Nonautonomous Functional Difference Systems. Hacettepe Journal of Mathematics and Statistics. 2025:1-16.