Research Article
BibTex RIS Cite

Orlicz amalgam spaces on the affine group

Year 2025, Volume: 54 Issue: 2, 529 - 541, 28.04.2025
https://doi.org/10.15672/hujms.1460222

Abstract

Let $\mathbb{A}$ be the affine group, $\Phi_1, \Phi_2$ be Young functions. We study the Orlicz amalgam spaces $W(L^{\Phi_1} (\mathbb{A}),L^{\Phi_2} (\mathbb{A}))$ defined on $\mathbb{A}$, where the local and global component spaces are the Orlicz spaces $L^{\Phi_1}(\mathbb{A})$ and $L^{\Phi_2}(\mathbb{A})$, respectively. We obtain an equivalent discrete norm on the amalgam space $W(L^{\Phi_1} (\mathbb{A}), L^{\Phi_2} (\mathbb{A}))$ using the constructions related to the affine group. Using the discrete norm we compute the dual space of $W(L^{\Phi_1} (\mathbb{A}),L^{\Phi_2} (\mathbb{A}))$. We also prove that the Orlicz amalgam space is a left $L^1(\mathbb{A})$-module with respect to convolution under certain conditions. Finally, we investigate some inclusion relations between the Orlicz amalgam spaces.

Thanks

I would like to thank Prof. S. Öztop for critical reading of the manuscript and helpful suggestions on the subject.

References

  • [1] B. Ars and S. Öztop, Wiener amalgam spaces with respect to Orlicz spaces on the affine group, J. Pseudo. Differ. Oper. Appl. 14, 23, 2023.
  • [2] A. Benedek and R. Panzone, The spaces $L^p$ with mixed norm, Duke Math. J. 28, 301-324, 1961.
  • [3] J.P. Bertrandias, C. Datry and C. Dupuis, Unions et intersections despaces Lp invariantes par translation ou convolution, Ann. Inst. Fourier 28, 53-84, 1978.
  • [4] R.C. Busby and H.A. Smith, Product-convolution operators and mixed-norm spaces, Trans. Amer. Math. Soc. 263, 309-341, 1981.
  • [5] D.L. Cohn, Measure Theory, 2nd ed., Birkhäuser/Springer, New York, 2013.
  • [6] E. Cordero and F. Nicola, Sharpness of some properties of Wiener amalgam and modulation spaces, Bull. Aust. Math. Soc. 80, 105-116, 2009.
  • [7] H.G. Feichtinger, Banach convolution algebras of Wiener type, in: Functions, Series, Operators, Colloq. Math. Soc. 35, 509-524, János Bolyai North-Holland, Amsterdam, 1983.
  • [8] H.G. Feichtinger, Banach spaces of distributions defined by decomposition methods, II, Math. Nachr. 132, 207237, 1987.
  • [9] H.G. Feichtinger and P. Gröbner, Banach spaces of distributions defined by decomposition methods, I, Math. Nachr. 123, 97-120, 1985.
  • [10] H.G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal., 86, 307-340, 1989.
  • [11] C. Heil, An introduction to weighted Wiener amalgams, in: Wavelets and Their Applications, 183216, Allied Publishers, New Delhi, 2003.
  • [12] C. Heil and G. Kutyniok, The homogeneous approximation property for wavelet frames, J. Approx. Theory, 147, 28-46, 2007.
  • [13] C. Heil and G. Kutyniok, Convolution and Wiener amalgam spaces on the affine group, in: Recent Advances in Computational Science, 209217, World Scientific, Singapore, 2008.
  • [14] F. Holland, Harmonic analysis on amalgams of $L^p$ and $\ell^q$, J. London Math. Soc. 10, 295-305, 1975.
  • [15] A. Osançlıol and S. Öztop, Weighted Orlicz algebras on locally compact groups, J. Aust. Math. Soc. 99, 399-414, 2015.
  • [16] S. Öztop and E. Samei, Twisted Orlicz algebras I, Studia Mathematica, 236, 271-296, 2017.
  • [17] M.M. Rao, Extensions of the Hausdorff-Young theorem, Israel J. Math. 6, 133-149, 1967.
  • [18] M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.
  • [19] M.M. Rao and Z.D. Ren, Application of Orlicz Spaces, Marcel Dekker, New York, 2002.
  • [20] M. Ruzhansky, M. Sugimoto and B. Wang, Modulation spaces and nonlinear evolution equations, in: Evolution Equations of Hyperbolic and Schrödinger Type, Progr. Math., 301, 267283, Birkhäuser/Springer, 2012.
  • [21] N. Wiener, On the representation of functions by trigonometric integrals, Math. Z., 24, 575616, 1926.
  • [22] N. Wiener, Tauberian theorems, Ann. of Math., 33, 1100, 1932.
  • [23] N. Wiener, The Fourier Integral and Certain of its Applications, Cambridge Univ. Press, Cambridge, 1933.
Year 2025, Volume: 54 Issue: 2, 529 - 541, 28.04.2025
https://doi.org/10.15672/hujms.1460222

Abstract

References

  • [1] B. Ars and S. Öztop, Wiener amalgam spaces with respect to Orlicz spaces on the affine group, J. Pseudo. Differ. Oper. Appl. 14, 23, 2023.
  • [2] A. Benedek and R. Panzone, The spaces $L^p$ with mixed norm, Duke Math. J. 28, 301-324, 1961.
  • [3] J.P. Bertrandias, C. Datry and C. Dupuis, Unions et intersections despaces Lp invariantes par translation ou convolution, Ann. Inst. Fourier 28, 53-84, 1978.
  • [4] R.C. Busby and H.A. Smith, Product-convolution operators and mixed-norm spaces, Trans. Amer. Math. Soc. 263, 309-341, 1981.
  • [5] D.L. Cohn, Measure Theory, 2nd ed., Birkhäuser/Springer, New York, 2013.
  • [6] E. Cordero and F. Nicola, Sharpness of some properties of Wiener amalgam and modulation spaces, Bull. Aust. Math. Soc. 80, 105-116, 2009.
  • [7] H.G. Feichtinger, Banach convolution algebras of Wiener type, in: Functions, Series, Operators, Colloq. Math. Soc. 35, 509-524, János Bolyai North-Holland, Amsterdam, 1983.
  • [8] H.G. Feichtinger, Banach spaces of distributions defined by decomposition methods, II, Math. Nachr. 132, 207237, 1987.
  • [9] H.G. Feichtinger and P. Gröbner, Banach spaces of distributions defined by decomposition methods, I, Math. Nachr. 123, 97-120, 1985.
  • [10] H.G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal., 86, 307-340, 1989.
  • [11] C. Heil, An introduction to weighted Wiener amalgams, in: Wavelets and Their Applications, 183216, Allied Publishers, New Delhi, 2003.
  • [12] C. Heil and G. Kutyniok, The homogeneous approximation property for wavelet frames, J. Approx. Theory, 147, 28-46, 2007.
  • [13] C. Heil and G. Kutyniok, Convolution and Wiener amalgam spaces on the affine group, in: Recent Advances in Computational Science, 209217, World Scientific, Singapore, 2008.
  • [14] F. Holland, Harmonic analysis on amalgams of $L^p$ and $\ell^q$, J. London Math. Soc. 10, 295-305, 1975.
  • [15] A. Osançlıol and S. Öztop, Weighted Orlicz algebras on locally compact groups, J. Aust. Math. Soc. 99, 399-414, 2015.
  • [16] S. Öztop and E. Samei, Twisted Orlicz algebras I, Studia Mathematica, 236, 271-296, 2017.
  • [17] M.M. Rao, Extensions of the Hausdorff-Young theorem, Israel J. Math. 6, 133-149, 1967.
  • [18] M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.
  • [19] M.M. Rao and Z.D. Ren, Application of Orlicz Spaces, Marcel Dekker, New York, 2002.
  • [20] M. Ruzhansky, M. Sugimoto and B. Wang, Modulation spaces and nonlinear evolution equations, in: Evolution Equations of Hyperbolic and Schrödinger Type, Progr. Math., 301, 267283, Birkhäuser/Springer, 2012.
  • [21] N. Wiener, On the representation of functions by trigonometric integrals, Math. Z., 24, 575616, 1926.
  • [22] N. Wiener, Tauberian theorems, Ann. of Math., 33, 1100, 1932.
  • [23] N. Wiener, The Fourier Integral and Certain of its Applications, Cambridge Univ. Press, Cambridge, 1933.
There are 23 citations in total.

Details

Primary Language English
Subjects Lie Groups, Harmonic and Fourier Analysis, Operator Algebras and Functional Analysis
Journal Section Mathematics
Authors

Büşra Arıs 0000-0002-4699-4122

Early Pub Date August 27, 2024
Publication Date April 28, 2025
Submission Date March 29, 2024
Acceptance Date June 1, 2024
Published in Issue Year 2025 Volume: 54 Issue: 2

Cite

APA Arıs, B. (2025). Orlicz amalgam spaces on the affine group. Hacettepe Journal of Mathematics and Statistics, 54(2), 529-541. https://doi.org/10.15672/hujms.1460222
AMA Arıs B. Orlicz amalgam spaces on the affine group. Hacettepe Journal of Mathematics and Statistics. April 2025;54(2):529-541. doi:10.15672/hujms.1460222
Chicago Arıs, Büşra. “Orlicz Amalgam Spaces on the Affine Group”. Hacettepe Journal of Mathematics and Statistics 54, no. 2 (April 2025): 529-41. https://doi.org/10.15672/hujms.1460222.
EndNote Arıs B (April 1, 2025) Orlicz amalgam spaces on the affine group. Hacettepe Journal of Mathematics and Statistics 54 2 529–541.
IEEE B. Arıs, “Orlicz amalgam spaces on the affine group”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 2, pp. 529–541, 2025, doi: 10.15672/hujms.1460222.
ISNAD Arıs, Büşra. “Orlicz Amalgam Spaces on the Affine Group”. Hacettepe Journal of Mathematics and Statistics 54/2 (April 2025), 529-541. https://doi.org/10.15672/hujms.1460222.
JAMA Arıs B. Orlicz amalgam spaces on the affine group. Hacettepe Journal of Mathematics and Statistics. 2025;54:529–541.
MLA Arıs, Büşra. “Orlicz Amalgam Spaces on the Affine Group”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 2, 2025, pp. 529-41, doi:10.15672/hujms.1460222.
Vancouver Arıs B. Orlicz amalgam spaces on the affine group. Hacettepe Journal of Mathematics and Statistics. 2025;54(2):529-41.