Conformal Geometric Solitons on the Tangent Bundle of a Statistical Manifold
Year 2025,
Volume: 18 Issue: 1, 86 - 96, 24.04.2025
Lokman Bilen
,
Aydın Gezer
Abstract
Let $(M_{n},\nabla ,g)$ denote a statistical manifold equipped with a torsion-free linear connection $\nabla $ and a (pseudo-) Riemannian metric $%g $. The tangent bundle $TM$ of the statistical manifold $(M_{n},\nabla ,g)$ is endowed with a twisted Sasaki metric, denoted as $G$. The objective of this paper is to explore conformal Ricci, conformal Yamabe, and conformal Ricci-Yamabe solitons on the tangent bundle $TM$ concerning the twisted Sasaki metric $G$.
Thanks
The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their
helpful comments and suggestions.
References
- Abbassi, M. T. K. and Sarih, M.: On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds.
Difer. Geom. Appl., 22 (1), 19-47 (2005).
- Altunbaş M.: Ricci-Yamabe solitons on the Lie group H2R. International Journal of Maps in Mathematics, 7 (2), 217-223 (2024).
- Altunbaş, M.: Conformal Yamabe Solitons on Tangent Bundles with Complete Lifts of Some Special Connections. Proceedings of the Bulgarian
Academy of Sciences, 76 (8), 1176–1186 (2023).
- Amari, S.: Information geometry of the EM and em algorithms for neural networks. Neural Networks, 8 (9), 1379-1408 (1995).
- Amari, S. and Nagaoka, H.: Methods of information geometry. American Mathematical Society, (2000).
- Amari, S.: Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics, 28, Springer, New York, (1985).
- Barbosa, E. and Ribeiro Jr., E.: On conformal solutions of the Yamabe flow. Arch. Math. 101, 79-89 (2013).
- Basu, N., Bhattacharyya, A.: Conformal Ricci soliton in Kenmotsu manifold. Global Journal of Advanced Research on Classical and Modern
Geometries, 4 (1), 15-21 (2015).
- Belkin, M., Niyogi, P. and Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal
of Machine Learning Research, 7, 2399-2434 (2006).
- Bilen, L. and Gezer, A. Some results on Riemannian g-natural metrics generated by classical lifts on the tangent bundle. Eurasian Math. J. 8 (4),
18–34 (2017).
- Blaga, A. M. and Perkta¸s, S. Y. Remarks on almost n-Ricci solitons in (ϵ)-para Sasakian manifolds. Communications Faculty of Sciences
University of Ankara Series A1 Mathematics and Statistics, 68 (2), 1621-1628 (2019).
- Caticha, A.: Geometry from information geometry. AIP Conf. Proc. 1757, 030001 (2016).
- Caticha, A.: The information geometry of space and time. AIP Conf. Proc. 803, 355-365 (2005).
- Catino, G. and Mazzieri, L.: Gradient Einstein solitons. Nonlinear Anal., 132, 66-94 (2016).
- Fei, T. and Zhang, J.: Interaction of Codazzi couplings with (Para-)Kähler geometry. Result Math. 72 (4), 2037-2056 (2017).
- Fischer, A. E.: An introduction to conformal Ricci flow. Class. Quantum Grav. 21 (3), 171-218 (2004).
- Gezer, A., Bilen L. and De U. C.: Conformal vector fields and geometric solitons on the tangent bundle with the ciconia metric. Filomat., 37 (24),
8193-8204 (2023).
- Güler, S. and Crasmareanu, M.: Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy. Turkish J. Math. 43 (5),
2631–2641 (2019).
- Hamilton, R. S.: The Ricci flow on surfaces. Contemp. Math. 71, 237-262 (1988).
- Hamilton, R. S.: Three manifold with positive Ricci curvature. J. Differential Geom. 17 (2), 255-306 (1982).
- Lauritzen, S. L.: Statistical manifolds In: Differential Geometry in Statistical Inferences. IMS Lecture Notes Monogr. Ser. 10, Inst. Math. Statist.
Hayward California, 96-163 (1987).
- Li, Y., Bilen, L. and Gezer, A.: Analyzing Curvature Properties and Geometric Solitons of the Twisted Sasaki Metric on the Tangent Bundle over a
Statistical Manifold. Mathematics. 12, 1395 (2024). https://doi.org/10.3390/math12091395
- Li, Y., Gezer, A., Karakas, E.: Exploring Conformal Soliton Structures in Tangent Bundles with Ricci-Quarter Symmetric Metric Connections.
Mathematics. 12, 2101 (2024). https://doi.org/10.3390/math12132101
- Matsuzoe, H.: Statistical manifolds and affine differential geometry. Advanced Studies in Pure Mathematics 57, Probabilistic Approach to
Geometry, pp. 303-321 (2010).
- Rao, C. R.: Information and Accuracy Attainable in the Estimation of Statistical Parameters. Bull. Calcutta Math. Soc. 37, 81-91 (1945).
- Roy, S., Dey, S. and Bhattacharyya, A.: Conformal Yamabe soliton and *-Yamabe soliton with torse forming potential vector field. Mat. Vesnik 73
(4), 282-292 (2021).
- Roy, S., Bhattacharyya, A.: A Kenmotsu Metric as a*-conformal Yamabe Soliton with Torse Forming Potential Vector Field. Acta Math. Sci. 37,
1896-1908 (2021).
- Schwenk-Schellschmidt, A. and Simon, U.: Codazzi-equivalent affine connections. Result Math. 56, 211-229 (2009).
- Sun, K. and Marchand-Maillet, S.: An information geometry of statistical manifold learning. Proceedings of the 31st International Conference
on Machine Learning (ICML-14), 1-9 (2014).
- Yamauchi, K.: On infinitesimal conformal transformations of the tangent bundles over Riemannian manifolds. Ann Rep. Asahikawa. Med. Coll.,
15, 1-10 (1994).
- Yano, K. and Ishihara, S.: Tangent and Cotangent Bundles. Marcel Dekker, Inc, New York, USA, (1973).
Year 2025,
Volume: 18 Issue: 1, 86 - 96, 24.04.2025
Lokman Bilen
,
Aydın Gezer
References
- Abbassi, M. T. K. and Sarih, M.: On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds.
Difer. Geom. Appl., 22 (1), 19-47 (2005).
- Altunbaş M.: Ricci-Yamabe solitons on the Lie group H2R. International Journal of Maps in Mathematics, 7 (2), 217-223 (2024).
- Altunbaş, M.: Conformal Yamabe Solitons on Tangent Bundles with Complete Lifts of Some Special Connections. Proceedings of the Bulgarian
Academy of Sciences, 76 (8), 1176–1186 (2023).
- Amari, S.: Information geometry of the EM and em algorithms for neural networks. Neural Networks, 8 (9), 1379-1408 (1995).
- Amari, S. and Nagaoka, H.: Methods of information geometry. American Mathematical Society, (2000).
- Amari, S.: Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics, 28, Springer, New York, (1985).
- Barbosa, E. and Ribeiro Jr., E.: On conformal solutions of the Yamabe flow. Arch. Math. 101, 79-89 (2013).
- Basu, N., Bhattacharyya, A.: Conformal Ricci soliton in Kenmotsu manifold. Global Journal of Advanced Research on Classical and Modern
Geometries, 4 (1), 15-21 (2015).
- Belkin, M., Niyogi, P. and Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal
of Machine Learning Research, 7, 2399-2434 (2006).
- Bilen, L. and Gezer, A. Some results on Riemannian g-natural metrics generated by classical lifts on the tangent bundle. Eurasian Math. J. 8 (4),
18–34 (2017).
- Blaga, A. M. and Perkta¸s, S. Y. Remarks on almost n-Ricci solitons in (ϵ)-para Sasakian manifolds. Communications Faculty of Sciences
University of Ankara Series A1 Mathematics and Statistics, 68 (2), 1621-1628 (2019).
- Caticha, A.: Geometry from information geometry. AIP Conf. Proc. 1757, 030001 (2016).
- Caticha, A.: The information geometry of space and time. AIP Conf. Proc. 803, 355-365 (2005).
- Catino, G. and Mazzieri, L.: Gradient Einstein solitons. Nonlinear Anal., 132, 66-94 (2016).
- Fei, T. and Zhang, J.: Interaction of Codazzi couplings with (Para-)Kähler geometry. Result Math. 72 (4), 2037-2056 (2017).
- Fischer, A. E.: An introduction to conformal Ricci flow. Class. Quantum Grav. 21 (3), 171-218 (2004).
- Gezer, A., Bilen L. and De U. C.: Conformal vector fields and geometric solitons on the tangent bundle with the ciconia metric. Filomat., 37 (24),
8193-8204 (2023).
- Güler, S. and Crasmareanu, M.: Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy. Turkish J. Math. 43 (5),
2631–2641 (2019).
- Hamilton, R. S.: The Ricci flow on surfaces. Contemp. Math. 71, 237-262 (1988).
- Hamilton, R. S.: Three manifold with positive Ricci curvature. J. Differential Geom. 17 (2), 255-306 (1982).
- Lauritzen, S. L.: Statistical manifolds In: Differential Geometry in Statistical Inferences. IMS Lecture Notes Monogr. Ser. 10, Inst. Math. Statist.
Hayward California, 96-163 (1987).
- Li, Y., Bilen, L. and Gezer, A.: Analyzing Curvature Properties and Geometric Solitons of the Twisted Sasaki Metric on the Tangent Bundle over a
Statistical Manifold. Mathematics. 12, 1395 (2024). https://doi.org/10.3390/math12091395
- Li, Y., Gezer, A., Karakas, E.: Exploring Conformal Soliton Structures in Tangent Bundles with Ricci-Quarter Symmetric Metric Connections.
Mathematics. 12, 2101 (2024). https://doi.org/10.3390/math12132101
- Matsuzoe, H.: Statistical manifolds and affine differential geometry. Advanced Studies in Pure Mathematics 57, Probabilistic Approach to
Geometry, pp. 303-321 (2010).
- Rao, C. R.: Information and Accuracy Attainable in the Estimation of Statistical Parameters. Bull. Calcutta Math. Soc. 37, 81-91 (1945).
- Roy, S., Dey, S. and Bhattacharyya, A.: Conformal Yamabe soliton and *-Yamabe soliton with torse forming potential vector field. Mat. Vesnik 73
(4), 282-292 (2021).
- Roy, S., Bhattacharyya, A.: A Kenmotsu Metric as a*-conformal Yamabe Soliton with Torse Forming Potential Vector Field. Acta Math. Sci. 37,
1896-1908 (2021).
- Schwenk-Schellschmidt, A. and Simon, U.: Codazzi-equivalent affine connections. Result Math. 56, 211-229 (2009).
- Sun, K. and Marchand-Maillet, S.: An information geometry of statistical manifold learning. Proceedings of the 31st International Conference
on Machine Learning (ICML-14), 1-9 (2014).
- Yamauchi, K.: On infinitesimal conformal transformations of the tangent bundles over Riemannian manifolds. Ann Rep. Asahikawa. Med. Coll.,
15, 1-10 (1994).
- Yano, K. and Ishihara, S.: Tangent and Cotangent Bundles. Marcel Dekker, Inc, New York, USA, (1973).