Research Article
BibTex RIS Cite

Unveiling $\: f-$Biharmonic $\: \theta _{\alpha }-$Slant Curves in $\: \mathcal{S}-$Space Forms

Year 2025, Volume: 18 Issue: 1, 111 - 123, 24.04.2025

Abstract

In this paper, we firstly provide a concise overview of $\mathcal{S}-$manifolds, $f$-biharmonicity and $\theta _{\alpha }$-slant curves. We then derive a key equation and analyze it in detail to establish the necessary and sufficient conditions for $\theta _{\alpha }$-slant curves to be $f$-biharmonic. Finally, we present an example to support our findings.

References

  • Baikoussis, C., Blair, D. E.: On Legendre curves in contact 3-manifolds. Geom. Dedicata. 49, 135-142 (1994).
  • Blair, D. E.: Geometry of manifolds with structural group U(n) × O(s). J. Differential Geometry. 4, 155-167 (1970).
  • Blair, D. E.: Riemannian geometry of contact and symplectic manifolds, Second edition. Progress in Mathematics, 203. Birkhäuser Boston, Inc., Boston, MA (2010).
  • Cabrerizo, J. L., Fernandez, L. M., Fernandez, M.: The curvature of submanifolds of an S-space form. Acta Math. Hungar. 62, 373-383 (1993).
  • Chen, B.Y.: A report on submanifolds of finite type. Soochow J. Math. 22, 117-337 (1996).
  • Cho, J. T., Inoguchi, J., Lee, J. E.: On slant curves in Sasakian 3-manifolds. Bull. Austral. Math. Soc. 74, 359-367 (2006).
  • Eells, Jr. J., Lemaire, L.: Selected topics in harmonic maps. Amer. Math. Soc., Providence, R.I. (1983).
  • Eells, Jr. J., Sampson, J. H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109-160 (1964).
  • Fetcu, D., Oniciuc, C.: Explicit formulas for biharmonic submanifolds in Sasakian space forms. Pacific J. Math. 240, 85-107 (2009).
  • Güvenç, Ş., Özgür, C.: On slant curves in S-manifolds. Commun. Korean Math. Soc. 33(1), 293-303 (2018).
  • Güvenç, Ş., Özgür, C.: C-parallel and C-proper Slant Curves of S-manifolds. Filomat 33(19), 6305-6313 (2019).
  • Güvenç, Ş.: A Note on f-biharmonic Legendre Curves in S-space forms. International Electronic Journal of Geometry. 12(2), 260-267 (2019).
  • Güvenç, Ş.: An Extended Family of Slant Curves in S-manifolds. Mathematical Sciences and Applications E-Notes. 8(1), 69-77 (2020).
  • Hasegawa, I., Okuyama, Y., Abe, T.: On p-th Sasakian manifolds. J. Hokkaido Univ. Ed. Sect. II A. 37(1), 1-16 (1986).
  • Jiang, G. Y.: 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A. 7, 389-402 (1986).
  • Kim, J. S., Dwivedi, M. K., Tripathi, M. M.: Ricci curvature of integral submanifolds of an S-space form. Bull. Korean Math. Soc. 44, 395-406 (2007).
  • Nakagawa, H.: On framed f-manifolds. Kodai Math. Sem. Rep. 18, 293-306 (1966).
  • Ou, Y. L.: On f-biharmonic maps and f-biharmonic submanifolds. Pacific Journal of Mathematics. 271(2), 461-477.
  • Özgür, C., Güvenç, Ş.: On biharmonic Legendre curves in S-space forms. Turkish J. Math. 38(3), 454-461 (2014).
  • Yano, K., Kon, M.: Structures on Manifolds. Series in Pure Mathematics. 3. World Scientific Publishing Co., Singapore (1984).
There are 20 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Şaban Güvenç 0000-0001-6254-4693

Early Pub Date April 20, 2025
Publication Date April 24, 2025
Submission Date October 26, 2024
Acceptance Date March 2, 2025
Published in Issue Year 2025 Volume: 18 Issue: 1

Cite

APA Güvenç, Ş. (2025). Unveiling $\: f-$Biharmonic $\: \theta _{\alpha }-$Slant Curves in $\: \mathcal{S}-$Space Forms. International Electronic Journal of Geometry, 18(1), 111-123.
AMA Güvenç Ş. Unveiling $\: f-$Biharmonic $\: \theta _{\alpha }-$Slant Curves in $\: \mathcal{S}-$Space Forms. Int. Electron. J. Geom. April 2025;18(1):111-123.
Chicago Güvenç, Şaban. “Unveiling $\: F-$Biharmonic $\: \theta _{\alpha }-$Slant Curves in $\: \mathcal{S}-$Space Forms”. International Electronic Journal of Geometry 18, no. 1 (April 2025): 111-23.
EndNote Güvenç Ş (April 1, 2025) Unveiling $\: f-$Biharmonic $\: \theta _{\alpha }-$Slant Curves in $\: \mathcal{S}-$Space Forms. International Electronic Journal of Geometry 18 1 111–123.
IEEE Ş. Güvenç, “Unveiling $\: f-$Biharmonic $\: \theta _{\alpha }-$Slant Curves in $\: \mathcal{S}-$Space Forms”, Int. Electron. J. Geom., vol. 18, no. 1, pp. 111–123, 2025.
ISNAD Güvenç, Şaban. “Unveiling $\: F-$Biharmonic $\: \theta _{\alpha }-$Slant Curves in $\: \mathcal{S}-$Space Forms”. International Electronic Journal of Geometry 18/1 (April 2025), 111-123.
JAMA Güvenç Ş. Unveiling $\: f-$Biharmonic $\: \theta _{\alpha }-$Slant Curves in $\: \mathcal{S}-$Space Forms. Int. Electron. J. Geom. 2025;18:111–123.
MLA Güvenç, Şaban. “Unveiling $\: F-$Biharmonic $\: \theta _{\alpha }-$Slant Curves in $\: \mathcal{S}-$Space Forms”. International Electronic Journal of Geometry, vol. 18, no. 1, 2025, pp. 111-23.
Vancouver Güvenç Ş. Unveiling $\: f-$Biharmonic $\: \theta _{\alpha }-$Slant Curves in $\: \mathcal{S}-$Space Forms. Int. Electron. J. Geom. 2025;18(1):111-23.