Research Article
BibTex RIS Cite

Design and Analysis of an Crank-Connecting Rod Mechanism without Cylinder Thrusting for the Second Stage of a Compressor

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1569099

Abstract

Although traditional crank-connecting rod mechanisms are preferred due to their simplicity and ease of assembly, the piston is subjected to unwanted movements due to secondary motion, causing problems such as noise, vibration, gas leakage, friction and wear in the system.In this study, a new design and comparative analysis of this design with the conventional mechanism are presented in order to minimize the mechanical disadvantages identified in the conventional crank-connecting rod mechanism. In the calculations and analysis, a two-stage brake air compressor model with a conventional crank-connecting rod mechanism commonly used in heavy-duty vehicles was used. The new design features a shorter connecting rod, a rod integrated with the piston pin and a linear bearing fixed to the block, which reduces lateral friction. With the calculations performed, the mechanisms were compared in terms of piston position, velocity, acceleration and piston lateral forces and verified with FEA models. In the new mechanism, it was determined that the leaning force at the piston-cylinder interface increased with the effect of increasing connecting rod angle due to the lower connecting rod / crank ratio, but the friction force decreased by approximately 92% compared to the conventional system due to the low friction coefficient of the linear bearing.

References

  • [1] Holmberg, K. and Erdemir, A., “Influence of tribology on global energy consumption, costs and emissions” Friction, 5, 263-284, (2017).
  • [2] Can, Ö. and Çetin, Ö., “Potential use of graphene oxide as an engine oil additive for energy savings in a diesel engine” Engineering Science and Technology, an International Journal,48, 101567, (2023).
  • [3] Holmberg, K., Andersson, P., and Erdemir, A., “Global energy consumption due to friction in passenger cars” Tribology International, 47, 221-234, (2012).
  • [4] Şimşek M., Salman Nteziyaremye Ö., Kaleli E. H., Tunay R. F., and Durak E., “ Experimental Analysis of effect to friction of commercial oil additive used in automobiles”, Journal of Polytechnic, 27(3): 921-929, (2024).
  • [5] Ünlüoğlu, O. ve Çelik, O. N., “Grafit partiküllerinin yağ katkısı olarak AISI H11 çeliğinin sürtünme ve aşınma davranışı üzerine etkisi” Politeknik Dergisi, 1-1, (2012).
  • [6] Kula, G., “Ağır hizmet tipi araçlardaki hava fren kompresörü ve hava hattının yeni teknolojiye entegresinin araştırılması”, Yüksek Lisans, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, (2020).
  • [7] Şahin,S. “Basınçlı hava sistemlerinde enerji verimliliği ve uygulama örnekleri”, Yüksek Lisans, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, (2022).
  • [8] Aung, W. P. and Win, H. H., “Design and Analysis of Piston for Two Stages Reciprocating Air Compressor” International journal of scientific engineering and technology research, 3(15), 3252-3258, (2014).
  • [9] Sathyaraj, A., “Analysis and performance enhancement of intercooler in two stage reciprocating air compressor using CFD”, International Journal of Application in Mechanical and Production Engineering,1, 1-5, (2015).
  • [10] Aydıner, M.Ş., “Bir ağır vasıta hava kompresörünün modellenmesi ve performans optimizasyonu”, Yüksek Lisans, KTÜN Lisansüstü Eğitim Enstitüsü, (2022).
  • [11] Gül, E. ve Kalyoncu, M., “Ağır Vasıta Hava Kompresörü Arıza Durumlarının Naive Bayes Sınıflandırıcısı Kullanılarak Analizi”, Avrupa Bilim ve Teknoloji Dergisi, (31), 796-800, (2021).
  • [12] Nathalal, G.K., A review on study of an air compressor”, Journal of Emerging Technologies and Innovative Research,5(4), 26-34, (2018).
  • [13] Stewart, M., “Surface production operations: volume IV: pumps and compressors”, Gulf Professional Publishing, (2018).
  • [14] Lu, K., Sultan, I.A. and Phung, T.H., “A Literature Review of the Positive Displacement Compressor: Current Challenges and Future Opportunities”, Energies, 16(20), (2023).
  • [15] Mantri, P., Kachhia, B., Tamma, B. and Bhakta, A., “Friction model development for a reciprocating compressor”, Int. Compressor Engineering Conference, (2014).
  • [16] Bedajangam, S. K. and Jadhav, N.P., “Friction losses between piston ring-liner assembly of internal combustion engine: a review”, International Journal of Scientific and Research Publications, 3(6), 1-3, (2013).
  • [17] Guo, J., Randall, R.B., Borghesani, P., Smith, W.A., Haneef, M.D., and Peng, Z., “A study on the effects of piston secondary motion in conjunction with clearance joints” Mechanism and Machine Theory,149, 103824, (2020).
  • [18] Kurbet, S.N. and Malagi, R. R. Review on effects of piston and piston ring dynamics emphasis with oil consumption and frictional losses in internal combustion engines”, SAE Technical Paper, (2007).
  • [19] Günelsu, Ö., “Numerıcal ınvestıgatıon of power cylinder lubrication and frictional performance considering piston elastic deformations”, Doktora Tezi, İstanbul Teknik Üniversitesi Fen Mühendisliği ve Teknoloji Enstitüsü, (2016).
  • [20] Braga, V.M., “Effects of Gas Compressibility and Piston Secondary Motion on Leakage in the Piston-Cylinder Clearance of Reciprocating Compressors”, International Compressor Engineering Conference, (2018).
  • [21] Mansouri, S. H. and Wong, V. W., “Effects of piston design parameters on piston secondary motion and skirt-liner friction” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 219(6), 435-449, (2005).
  • [22] Milojević, S., Dzunic, D., Taranović, D., Pešić, R. and Mitrovic, S., “Optimization of mechanical losses in reciprocating air compressor with cylinder consisting of aluminum alloy”, Proceedings on Engineering Sciences, (2019).
  • [23] Milojević, S., Savić, S., Mitrović, S., Marić, D., Krstić, B., Stojanović, B. and Popović, V., “Solving the problem of friction and wear in auxiliary devices of internal combustion engines on the example of reciprocating air compressor for vehicles”, Tehnički vjesnik, 30(1), 122-130, (2023).
  • [24] Kula, G. and Ciniviz, M., “Atmospheric and Turbocharged Experimental Investigation of Heavy Vehicle Compressor Air Inlet Line”, International Journal of Automotive Science and Technology, 4(4), 213-222, (2020).
  • [25] Narayan, S. “Effects of various parameters on piston secondary motion” SAE Technical Paper, (2015).
  • [26] Ruch, D.M., Fronczak, F. J. and Beachley, N.H. Design of a modified hypocycloid engine, SAE Technical Paper, 1547-1564, (1991).
  • [27] Dado, M., Alrbai, M., Tanbour, E. and Al Asfar, J., “Performance assessment of a novel mechanism design of spark-ignition internal combustion engine”, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-21, (2021).
  • [28] Aziz, E. S. and Chassapis, C., “Enhanced hypocycloid gear mechanism for internal combustion engine applications”, Journal of Mech. Design, 138(12), 125002, (2016).
  • [29] Mobarak, H.M., Masjuki, H.H., Mohamad, E.N., Rahman, S.A., Al Mahmud, K.A. H., Habibullah, M. and Salauddin, S. “Effect of DLC coating on tribological behavior of cylinder liner-piston ring material combination when lubricated with Jatropha oil”, Procedia Engineering, 90, 733-739. (2014).
  • [30] Kerpicci, H., Sahin, C., and Ozdemir, A. R. “A New Approach to Mechanical Loss Measurement of a Reciprocating Compressor”. IOP Conference Series: Materials Science and Engineering , Vol. 604, No., (2019).
  • [31] Nikam, O. C. and Acharya, A. R.). “Experimental investigation on performance of reciprocating air compressor by using nanoparticle in lubricating oil”. Int J Adv Res, 447-451, (2018).
  • [32] Yang, H., Lei, J., Deng, X., Wen, J., Wen, Z., Song, G. and Mo, R., “Research on the influence of key structural parameters on piston secondary motion”, Scientific Reports, 11(1), 19080, (2021).
  • [33] Delprete, C., Razavykia, A. and Baldissera, P. Detailed analysis of piston secondary motion and tribological performance”, International Journal of Engine Research, 21(9), 1647-1661, (2020).
  • [34] Lohn, S.K. and Pereira, E.L.L., “Numerical investigation of the gas leakage through the piston-cylinder clearance of reciprocating compressors”, International Compressor Engineering Conference. (2014).
  • [35] Zhang, X. and Meng, X., “Analysis of piston secondary motion considering the variation in the system inertia”, Journal of Automobile Engineering, 223(4), 549-563, (2009).
  • [36] Gunelsu, O., Akalin, O., “The effects of piston skirt profiles on secondary motion and friction”, Journal of engineering for gas turbines and power,136(6), 062503, (2014).
  • [37] Tan, Y.C. and Ripin, Z.M., “Analysis of piston secondary motion” Journal of Sound and Vibration, 332(20), 5162-5176, (2013).
  • [38] Malagi, R.R., Kurbet, S.N. and Gowrishenkar, N., “Finite element study on piston assembly dynamics emphasis with lubrication”, SAE Technical Paper, (2009).
  • [39] Shadloo, M.S., Poultangari, R., Jamalabadi, M.A. and Rashidi, M. M. “A new and efficient mechanism for spark ignition engines”, Energy conversion and management, 96, 418-429, (2015).
  • [40] Wakabayashi, R., Takiguchi, M., Shimada, T., Mizuno, Y., & Yamauchi, T. “The effects of crank ratio and crankshaft offset on piston friction losses”, SAE Tech. Paper, (2003).
  • [41] ElBahloul, M. A., Aziz, E. S. and Chassapis, C., “Kinematic and dynamic performances of the hypocycloid gear mechanism for internal combustion engine applications”, SAE International Journal of Engines, 15(2), 223-246, (2022).
  • [42] Yılmaz, E., Çınar, C., Polat, S., Yucesu, H. S.,Uyumaz, A. ve Solmaz, H. “Rhombic hareket iletim ve krank-biyel mekanizmasına sahip buji ile ateşlemeli içten yanmalı motorun termodinamik analizleri”, International Combustion Sysmposium, (2018).
  • [43] Bloch, H.P. “A practical guide to compressor technology”, John Wiley & Sons, (2006).
  • [44] Delvaux, N., “Compressed air manual”, Atlas Copco, Belgium, (2015).
  • [45] Husn, Y.A.M., “Desıgnıng an aır recıprocatıng compressor wıth capacıty 1000lıt/mın at 6 bars”, Yüksek Lisans, Karabük Üniversitesi Fen Bilimleri Enstitüsü, (2017).
  • [46] Çetinkaya, S., “Motor Dinamiği”, Nobel Akademik Yayıncılık, (2014).
  • [47] Venkatesan, J., Nagarajan, G., Seeniraj, R. V. and Murugan, R., “Experimental validation of a mathematical model of a reed-valve reciprocating air compressor from an automotive-braking system”, International Journal of Automotive Technology, 11, 317-322, (2010).
  • [48] Altin, M., Okur, M., Ipci, D., Halis, S. and Karabulut, H., “Thermodynamic and dynamic analysis of an alpha type stirling engine with scotch soke mechanism”, Energy,148, 855-865, (2018).
  • [49] Aydın, Z., “Deniz taşıtlarında kullanılan farklı yağların segman-silindir çifti yüzeylerindeki tribolojik özelliklerine etki eden parametrelerin incelenmesi”, Yüksek Lisans , Yıldız Teknik Üniversitesi Fen Bilimler Enstitüsü, (2015).
  • [50] Young, H.D., Freedman, R. A. and Ford, A.L., “University physics with modern physics”, San Francisco: Pearson (Vol. 191), (2020).
  • [51] Chu, N.R., Jackson, R.L., Ghaednia, H., ve Gangopadhyay, A., “A mixed lubrication model of piston rings on cylinder liner contacts considering temperature-dependent shear thinning and elastic–plastic contact” Lubricants, 11(5), 208, (2023).
  • [52] Trivedi, H. K., and Bhatt, D. V., “Effect of lubricants on the friction of cylinder liner and piston ring materials in a reciprocating bench test”, FME Transac., 47(1), (2019).
  • [53] Söderfjäll, M., Herbst, H.M., Larsson, R., Almqvist, A., “Influence on friction from piston ring design, cylinder liner roughness and lubricant properties”, Tribology International, 116, 272-284, (2017).
  • [54] Ahmed Ali, M.K., Xianjun, H., Fiifi Turkson, R., and Ezzat, M., “An analytical study of tribological parameters between piston ring and cylinder liner in internal combustion engines” Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 230(4), 329-349, (2016).
  • [55] Savaş, Ö., Elçiçek, H. and Aydın, Z., “Taguchi Yaklaşımı ile İçten Yanmalı Motorlarda Segman-Silindir Gömleği Arasındaki Sürtünme Katsayısının Deneysel Olarak İncelenmesi”, Journal of Eta Maritime Science, 6(1), 17-25, (2018).
  • [56] Linear Bearings and Housings, https://www.euro-bearings.com/bushingsgeneral.html (accessed: Şubat 2024)
  • [57] Sultan, I.A., and Kalim, A., “Improving reciprocating compressor performance using a hybrid two‐level optimisation approach”, Engineering Computations, 28(5), 616-636, (2011).

Bir Kompresörün İkinci Kademesi İçin Silindir Yaslanmasız Krank-Biyel Mekanizmasının Tasarımı ve Analizleri

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1569099

Abstract

Geleneksel krank-biyel mekanizmaları, basitliği ve montaj kolaylığından dolayı tercih edilse de, ikincil hareket nedeniyle pistonun istenmeyen hareketlere maruz kalması; sistemde gürültü, titreşim, gaz kaçağı, sürtünme ve aşınma gibi olumsuzluklara neden olmaktadır. Bu çalışmada geleneksel krank-biyel mekanizmasında tespit edilen mekanik olumsuzlukları en aza indirmek amacıyla yeni bir tasarıma ve bu tasarımın geleneksel mekanizma ile karşılaştırmalı analizlerine yer verilmiştir. Hesaplamalar ve analizlerde ağır vasıta araçlarda yaygın olarak kullanılan geleneksel krank-biyel mekanizmasına sahip iki kademeli bir fren hava kompresörü modelinden faydalanılmıştır. Yeni tasarımda, daha kısa biyel kolu, piston pimi ile bütünleşik bir rod ve yanal sürtünmeyi azaltan, bloğa sabitlenmiş lineer yatak yer almaktadır. Yapılan hesaplamalar ile mekanizmalar piston konum, hız, ivme ve piston yanal kuvvetleri bakımından karşılaştırılmış ve FEA modelleri ile doğrulanmıştır. Yeni mekanizmada daha düşük biyel/krank oranından dolayı artan biyel açısının etkisiyle piston-silindir arayüzeyindeki yaslanma kuvvetinin arttığı fakat lineer yatağın düşük sürtünme katsayısı nedeniyle sürtünme kuvvetinin geleneksel sisteme göre yaklaşık %92 oranında azaldığı belirlenmiştir.

Ethical Statement

Bu makalenin yazar(lar)ı çalışmalarında kullandıkları materyal ve yöntemlerin etik kurul izni ve/veya yasal özel bir izin gerektirmediğini beyan ederler.

References

  • [1] Holmberg, K. and Erdemir, A., “Influence of tribology on global energy consumption, costs and emissions” Friction, 5, 263-284, (2017).
  • [2] Can, Ö. and Çetin, Ö., “Potential use of graphene oxide as an engine oil additive for energy savings in a diesel engine” Engineering Science and Technology, an International Journal,48, 101567, (2023).
  • [3] Holmberg, K., Andersson, P., and Erdemir, A., “Global energy consumption due to friction in passenger cars” Tribology International, 47, 221-234, (2012).
  • [4] Şimşek M., Salman Nteziyaremye Ö., Kaleli E. H., Tunay R. F., and Durak E., “ Experimental Analysis of effect to friction of commercial oil additive used in automobiles”, Journal of Polytechnic, 27(3): 921-929, (2024).
  • [5] Ünlüoğlu, O. ve Çelik, O. N., “Grafit partiküllerinin yağ katkısı olarak AISI H11 çeliğinin sürtünme ve aşınma davranışı üzerine etkisi” Politeknik Dergisi, 1-1, (2012).
  • [6] Kula, G., “Ağır hizmet tipi araçlardaki hava fren kompresörü ve hava hattının yeni teknolojiye entegresinin araştırılması”, Yüksek Lisans, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, (2020).
  • [7] Şahin,S. “Basınçlı hava sistemlerinde enerji verimliliği ve uygulama örnekleri”, Yüksek Lisans, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, (2022).
  • [8] Aung, W. P. and Win, H. H., “Design and Analysis of Piston for Two Stages Reciprocating Air Compressor” International journal of scientific engineering and technology research, 3(15), 3252-3258, (2014).
  • [9] Sathyaraj, A., “Analysis and performance enhancement of intercooler in two stage reciprocating air compressor using CFD”, International Journal of Application in Mechanical and Production Engineering,1, 1-5, (2015).
  • [10] Aydıner, M.Ş., “Bir ağır vasıta hava kompresörünün modellenmesi ve performans optimizasyonu”, Yüksek Lisans, KTÜN Lisansüstü Eğitim Enstitüsü, (2022).
  • [11] Gül, E. ve Kalyoncu, M., “Ağır Vasıta Hava Kompresörü Arıza Durumlarının Naive Bayes Sınıflandırıcısı Kullanılarak Analizi”, Avrupa Bilim ve Teknoloji Dergisi, (31), 796-800, (2021).
  • [12] Nathalal, G.K., A review on study of an air compressor”, Journal of Emerging Technologies and Innovative Research,5(4), 26-34, (2018).
  • [13] Stewart, M., “Surface production operations: volume IV: pumps and compressors”, Gulf Professional Publishing, (2018).
  • [14] Lu, K., Sultan, I.A. and Phung, T.H., “A Literature Review of the Positive Displacement Compressor: Current Challenges and Future Opportunities”, Energies, 16(20), (2023).
  • [15] Mantri, P., Kachhia, B., Tamma, B. and Bhakta, A., “Friction model development for a reciprocating compressor”, Int. Compressor Engineering Conference, (2014).
  • [16] Bedajangam, S. K. and Jadhav, N.P., “Friction losses between piston ring-liner assembly of internal combustion engine: a review”, International Journal of Scientific and Research Publications, 3(6), 1-3, (2013).
  • [17] Guo, J., Randall, R.B., Borghesani, P., Smith, W.A., Haneef, M.D., and Peng, Z., “A study on the effects of piston secondary motion in conjunction with clearance joints” Mechanism and Machine Theory,149, 103824, (2020).
  • [18] Kurbet, S.N. and Malagi, R. R. Review on effects of piston and piston ring dynamics emphasis with oil consumption and frictional losses in internal combustion engines”, SAE Technical Paper, (2007).
  • [19] Günelsu, Ö., “Numerıcal ınvestıgatıon of power cylinder lubrication and frictional performance considering piston elastic deformations”, Doktora Tezi, İstanbul Teknik Üniversitesi Fen Mühendisliği ve Teknoloji Enstitüsü, (2016).
  • [20] Braga, V.M., “Effects of Gas Compressibility and Piston Secondary Motion on Leakage in the Piston-Cylinder Clearance of Reciprocating Compressors”, International Compressor Engineering Conference, (2018).
  • [21] Mansouri, S. H. and Wong, V. W., “Effects of piston design parameters on piston secondary motion and skirt-liner friction” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 219(6), 435-449, (2005).
  • [22] Milojević, S., Dzunic, D., Taranović, D., Pešić, R. and Mitrovic, S., “Optimization of mechanical losses in reciprocating air compressor with cylinder consisting of aluminum alloy”, Proceedings on Engineering Sciences, (2019).
  • [23] Milojević, S., Savić, S., Mitrović, S., Marić, D., Krstić, B., Stojanović, B. and Popović, V., “Solving the problem of friction and wear in auxiliary devices of internal combustion engines on the example of reciprocating air compressor for vehicles”, Tehnički vjesnik, 30(1), 122-130, (2023).
  • [24] Kula, G. and Ciniviz, M., “Atmospheric and Turbocharged Experimental Investigation of Heavy Vehicle Compressor Air Inlet Line”, International Journal of Automotive Science and Technology, 4(4), 213-222, (2020).
  • [25] Narayan, S. “Effects of various parameters on piston secondary motion” SAE Technical Paper, (2015).
  • [26] Ruch, D.M., Fronczak, F. J. and Beachley, N.H. Design of a modified hypocycloid engine, SAE Technical Paper, 1547-1564, (1991).
  • [27] Dado, M., Alrbai, M., Tanbour, E. and Al Asfar, J., “Performance assessment of a novel mechanism design of spark-ignition internal combustion engine”, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-21, (2021).
  • [28] Aziz, E. S. and Chassapis, C., “Enhanced hypocycloid gear mechanism for internal combustion engine applications”, Journal of Mech. Design, 138(12), 125002, (2016).
  • [29] Mobarak, H.M., Masjuki, H.H., Mohamad, E.N., Rahman, S.A., Al Mahmud, K.A. H., Habibullah, M. and Salauddin, S. “Effect of DLC coating on tribological behavior of cylinder liner-piston ring material combination when lubricated with Jatropha oil”, Procedia Engineering, 90, 733-739. (2014).
  • [30] Kerpicci, H., Sahin, C., and Ozdemir, A. R. “A New Approach to Mechanical Loss Measurement of a Reciprocating Compressor”. IOP Conference Series: Materials Science and Engineering , Vol. 604, No., (2019).
  • [31] Nikam, O. C. and Acharya, A. R.). “Experimental investigation on performance of reciprocating air compressor by using nanoparticle in lubricating oil”. Int J Adv Res, 447-451, (2018).
  • [32] Yang, H., Lei, J., Deng, X., Wen, J., Wen, Z., Song, G. and Mo, R., “Research on the influence of key structural parameters on piston secondary motion”, Scientific Reports, 11(1), 19080, (2021).
  • [33] Delprete, C., Razavykia, A. and Baldissera, P. Detailed analysis of piston secondary motion and tribological performance”, International Journal of Engine Research, 21(9), 1647-1661, (2020).
  • [34] Lohn, S.K. and Pereira, E.L.L., “Numerical investigation of the gas leakage through the piston-cylinder clearance of reciprocating compressors”, International Compressor Engineering Conference. (2014).
  • [35] Zhang, X. and Meng, X., “Analysis of piston secondary motion considering the variation in the system inertia”, Journal of Automobile Engineering, 223(4), 549-563, (2009).
  • [36] Gunelsu, O., Akalin, O., “The effects of piston skirt profiles on secondary motion and friction”, Journal of engineering for gas turbines and power,136(6), 062503, (2014).
  • [37] Tan, Y.C. and Ripin, Z.M., “Analysis of piston secondary motion” Journal of Sound and Vibration, 332(20), 5162-5176, (2013).
  • [38] Malagi, R.R., Kurbet, S.N. and Gowrishenkar, N., “Finite element study on piston assembly dynamics emphasis with lubrication”, SAE Technical Paper, (2009).
  • [39] Shadloo, M.S., Poultangari, R., Jamalabadi, M.A. and Rashidi, M. M. “A new and efficient mechanism for spark ignition engines”, Energy conversion and management, 96, 418-429, (2015).
  • [40] Wakabayashi, R., Takiguchi, M., Shimada, T., Mizuno, Y., & Yamauchi, T. “The effects of crank ratio and crankshaft offset on piston friction losses”, SAE Tech. Paper, (2003).
  • [41] ElBahloul, M. A., Aziz, E. S. and Chassapis, C., “Kinematic and dynamic performances of the hypocycloid gear mechanism for internal combustion engine applications”, SAE International Journal of Engines, 15(2), 223-246, (2022).
  • [42] Yılmaz, E., Çınar, C., Polat, S., Yucesu, H. S.,Uyumaz, A. ve Solmaz, H. “Rhombic hareket iletim ve krank-biyel mekanizmasına sahip buji ile ateşlemeli içten yanmalı motorun termodinamik analizleri”, International Combustion Sysmposium, (2018).
  • [43] Bloch, H.P. “A practical guide to compressor technology”, John Wiley & Sons, (2006).
  • [44] Delvaux, N., “Compressed air manual”, Atlas Copco, Belgium, (2015).
  • [45] Husn, Y.A.M., “Desıgnıng an aır recıprocatıng compressor wıth capacıty 1000lıt/mın at 6 bars”, Yüksek Lisans, Karabük Üniversitesi Fen Bilimleri Enstitüsü, (2017).
  • [46] Çetinkaya, S., “Motor Dinamiği”, Nobel Akademik Yayıncılık, (2014).
  • [47] Venkatesan, J., Nagarajan, G., Seeniraj, R. V. and Murugan, R., “Experimental validation of a mathematical model of a reed-valve reciprocating air compressor from an automotive-braking system”, International Journal of Automotive Technology, 11, 317-322, (2010).
  • [48] Altin, M., Okur, M., Ipci, D., Halis, S. and Karabulut, H., “Thermodynamic and dynamic analysis of an alpha type stirling engine with scotch soke mechanism”, Energy,148, 855-865, (2018).
  • [49] Aydın, Z., “Deniz taşıtlarında kullanılan farklı yağların segman-silindir çifti yüzeylerindeki tribolojik özelliklerine etki eden parametrelerin incelenmesi”, Yüksek Lisans , Yıldız Teknik Üniversitesi Fen Bilimler Enstitüsü, (2015).
  • [50] Young, H.D., Freedman, R. A. and Ford, A.L., “University physics with modern physics”, San Francisco: Pearson (Vol. 191), (2020).
  • [51] Chu, N.R., Jackson, R.L., Ghaednia, H., ve Gangopadhyay, A., “A mixed lubrication model of piston rings on cylinder liner contacts considering temperature-dependent shear thinning and elastic–plastic contact” Lubricants, 11(5), 208, (2023).
  • [52] Trivedi, H. K., and Bhatt, D. V., “Effect of lubricants on the friction of cylinder liner and piston ring materials in a reciprocating bench test”, FME Transac., 47(1), (2019).
  • [53] Söderfjäll, M., Herbst, H.M., Larsson, R., Almqvist, A., “Influence on friction from piston ring design, cylinder liner roughness and lubricant properties”, Tribology International, 116, 272-284, (2017).
  • [54] Ahmed Ali, M.K., Xianjun, H., Fiifi Turkson, R., and Ezzat, M., “An analytical study of tribological parameters between piston ring and cylinder liner in internal combustion engines” Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 230(4), 329-349, (2016).
  • [55] Savaş, Ö., Elçiçek, H. and Aydın, Z., “Taguchi Yaklaşımı ile İçten Yanmalı Motorlarda Segman-Silindir Gömleği Arasındaki Sürtünme Katsayısının Deneysel Olarak İncelenmesi”, Journal of Eta Maritime Science, 6(1), 17-25, (2018).
  • [56] Linear Bearings and Housings, https://www.euro-bearings.com/bushingsgeneral.html (accessed: Şubat 2024)
  • [57] Sultan, I.A., and Kalim, A., “Improving reciprocating compressor performance using a hybrid two‐level optimisation approach”, Engineering Computations, 28(5), 616-636, (2011).
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Internal Combustion Engines
Journal Section Research Article
Authors

Özgür Çetin 0000-0001-7052-2275

Melih Okur 0000-0002-6017-1050

Early Pub Date April 12, 2025
Publication Date
Submission Date October 17, 2024
Acceptance Date March 23, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Çetin, Ö., & Okur, M. (2025). Bir Kompresörün İkinci Kademesi İçin Silindir Yaslanmasız Krank-Biyel Mekanizmasının Tasarımı ve Analizleri. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1569099
AMA Çetin Ö, Okur M. Bir Kompresörün İkinci Kademesi İçin Silindir Yaslanmasız Krank-Biyel Mekanizmasının Tasarımı ve Analizleri. Politeknik Dergisi. Published online April 1, 2025:1-1. doi:10.2339/politeknik.1569099
Chicago Çetin, Özgür, and Melih Okur. “Bir Kompresörün İkinci Kademesi İçin Silindir Yaslanmasız Krank-Biyel Mekanizmasının Tasarımı Ve Analizleri”. Politeknik Dergisi, April (April 2025), 1-1. https://doi.org/10.2339/politeknik.1569099.
EndNote Çetin Ö, Okur M (April 1, 2025) Bir Kompresörün İkinci Kademesi İçin Silindir Yaslanmasız Krank-Biyel Mekanizmasının Tasarımı ve Analizleri. Politeknik Dergisi 1–1.
IEEE Ö. Çetin and M. Okur, “Bir Kompresörün İkinci Kademesi İçin Silindir Yaslanmasız Krank-Biyel Mekanizmasının Tasarımı ve Analizleri”, Politeknik Dergisi, pp. 1–1, April 2025, doi: 10.2339/politeknik.1569099.
ISNAD Çetin, Özgür - Okur, Melih. “Bir Kompresörün İkinci Kademesi İçin Silindir Yaslanmasız Krank-Biyel Mekanizmasının Tasarımı Ve Analizleri”. Politeknik Dergisi. April 2025. 1-1. https://doi.org/10.2339/politeknik.1569099.
JAMA Çetin Ö, Okur M. Bir Kompresörün İkinci Kademesi İçin Silindir Yaslanmasız Krank-Biyel Mekanizmasının Tasarımı ve Analizleri. Politeknik Dergisi. 2025;:1–1.
MLA Çetin, Özgür and Melih Okur. “Bir Kompresörün İkinci Kademesi İçin Silindir Yaslanmasız Krank-Biyel Mekanizmasının Tasarımı Ve Analizleri”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1569099.
Vancouver Çetin Ö, Okur M. Bir Kompresörün İkinci Kademesi İçin Silindir Yaslanmasız Krank-Biyel Mekanizmasının Tasarımı ve Analizleri. Politeknik Dergisi. 2025:1-.