Research Article
BibTex RIS Cite

Minimum Covering Seidel Laplacian Energy of a Graph

Year 2025, Volume: 17 Issue: 1, 59 - 66, 30.06.2025
https://doi.org/10.47000/tjmcs.1528087

Abstract

This work proposes a matrix called minimum covering Seidel
Laplacian matrix and a new type of graph energy called minimum covering Seidel
Laplacian energy $ES_{Lc}\left( \mathcal{G}\right)$ which depends on its appropriate minimum covering set. Upper and lower bounds on $ES_{Lc}\left( \mathcal{G}\right) $ are presented.

Supporting Institution

Scientific Research Projects Committee of Harran University (HUBAP)

Project Number

24045

References

  • Adiga, C., Bayad, A., Gutman, I., Srinivas, S. A., The minimum covering energy of a graph, Kragujevac Journal of Science, 34(2012), 39–56.
  • Bravo, D., Cubrıa, F., Rada, J., Energy of matrices, Applied Mathematics and Computation, 312(2017), 149–157.
  • Fan, K., Maximum properties and inequalities for the eigenvalues of completely continuous operators, Natl. Acad. Sci., 37(1951), 760–766.
  • Furuichi, S., On refined young inequalities and reverse inequalities, J.Math. Inequal., 5(2011), 21–31.
  • Gutman, I., The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz, 103(1978), 1–22.
  • Gutman, I., Kulli, V.R., Nirmala energy, Open Journal of Discrete Applied Mathematics, 4(2021), 11–16.
  • Havare, Ö.Ç., The inverse sum indeg index (ISI) and ISI energy of hyaluronic acid-paclitaxel molecules used in anticancer drugs, Open Journal of Discrete Applied Mathematics, 4(2021), 72–81.
  • Kanna, R., Jagadeesh, R., Farahani, M.R., Minimum covering Seidel energy of a graph, Journal of the Indonesian Mathematical Society, 22(2016), 71–82.
  • Kanna, M.R., Dharmendra, B.N., Sridhara, G., Laplacian minimum covering energy of a graph, Advances and Applications in Discrete Mathematics, 13(2014), 85–108.
  • Li, X., Shi, Y., Gutman, I., Graph Energy, Springer, New York, 2012.
  • Mitrinovic, D.S., Vasic, P.M., Analytic Inequalities, Springer, Berlin, 1970.
  • Nikiforov, V., The energy of graphs and matrices, J. Math. Anal. Appl., 326(2007), 1472–1475.
  • Ozeki, N., On the estimation of inequalities by maximum and minimum values (in Japanese), Journal of College Arts and Science, Chiba University, 5(1968), 199–203.
  • Sevgi, E., Özkan Kızılırmak, G., Büyükköse, Ş., Cangül, I.N., Bounds for various graph energies, In ITM Web of Conferences, 49(2022).
Year 2025, Volume: 17 Issue: 1, 59 - 66, 30.06.2025
https://doi.org/10.47000/tjmcs.1528087

Abstract

Project Number

24045

References

  • Adiga, C., Bayad, A., Gutman, I., Srinivas, S. A., The minimum covering energy of a graph, Kragujevac Journal of Science, 34(2012), 39–56.
  • Bravo, D., Cubrıa, F., Rada, J., Energy of matrices, Applied Mathematics and Computation, 312(2017), 149–157.
  • Fan, K., Maximum properties and inequalities for the eigenvalues of completely continuous operators, Natl. Acad. Sci., 37(1951), 760–766.
  • Furuichi, S., On refined young inequalities and reverse inequalities, J.Math. Inequal., 5(2011), 21–31.
  • Gutman, I., The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz, 103(1978), 1–22.
  • Gutman, I., Kulli, V.R., Nirmala energy, Open Journal of Discrete Applied Mathematics, 4(2021), 11–16.
  • Havare, Ö.Ç., The inverse sum indeg index (ISI) and ISI energy of hyaluronic acid-paclitaxel molecules used in anticancer drugs, Open Journal of Discrete Applied Mathematics, 4(2021), 72–81.
  • Kanna, R., Jagadeesh, R., Farahani, M.R., Minimum covering Seidel energy of a graph, Journal of the Indonesian Mathematical Society, 22(2016), 71–82.
  • Kanna, M.R., Dharmendra, B.N., Sridhara, G., Laplacian minimum covering energy of a graph, Advances and Applications in Discrete Mathematics, 13(2014), 85–108.
  • Li, X., Shi, Y., Gutman, I., Graph Energy, Springer, New York, 2012.
  • Mitrinovic, D.S., Vasic, P.M., Analytic Inequalities, Springer, Berlin, 1970.
  • Nikiforov, V., The energy of graphs and matrices, J. Math. Anal. Appl., 326(2007), 1472–1475.
  • Ozeki, N., On the estimation of inequalities by maximum and minimum values (in Japanese), Journal of College Arts and Science, Chiba University, 5(1968), 199–203.
  • Sevgi, E., Özkan Kızılırmak, G., Büyükköse, Ş., Cangül, I.N., Bounds for various graph energies, In ITM Web of Conferences, 49(2022).
There are 14 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory, Combinatorics and Discrete Mathematics (Excl. Physical Combinatorics)
Journal Section Articles
Authors

N. Feyza Yalçın 0000-0001-5705-8658

Nigar Kırmızı 0009-0006-3305-2722

Project Number 24045
Publication Date June 30, 2025
Submission Date August 5, 2024
Acceptance Date March 26, 2025
Published in Issue Year 2025 Volume: 17 Issue: 1

Cite

APA Yalçın, N. F., & Kırmızı, N. (2025). Minimum Covering Seidel Laplacian Energy of a Graph. Turkish Journal of Mathematics and Computer Science, 17(1), 59-66. https://doi.org/10.47000/tjmcs.1528087
AMA Yalçın NF, Kırmızı N. Minimum Covering Seidel Laplacian Energy of a Graph. TJMCS. June 2025;17(1):59-66. doi:10.47000/tjmcs.1528087
Chicago Yalçın, N. Feyza, and Nigar Kırmızı. “Minimum Covering Seidel Laplacian Energy of a Graph”. Turkish Journal of Mathematics and Computer Science 17, no. 1 (June 2025): 59-66. https://doi.org/10.47000/tjmcs.1528087.
EndNote Yalçın NF, Kırmızı N (June 1, 2025) Minimum Covering Seidel Laplacian Energy of a Graph. Turkish Journal of Mathematics and Computer Science 17 1 59–66.
IEEE N. F. Yalçın and N. Kırmızı, “Minimum Covering Seidel Laplacian Energy of a Graph”, TJMCS, vol. 17, no. 1, pp. 59–66, 2025, doi: 10.47000/tjmcs.1528087.
ISNAD Yalçın, N. Feyza - Kırmızı, Nigar. “Minimum Covering Seidel Laplacian Energy of a Graph”. Turkish Journal of Mathematics and Computer Science 17/1 (June 2025), 59-66. https://doi.org/10.47000/tjmcs.1528087.
JAMA Yalçın NF, Kırmızı N. Minimum Covering Seidel Laplacian Energy of a Graph. TJMCS. 2025;17:59–66.
MLA Yalçın, N. Feyza and Nigar Kırmızı. “Minimum Covering Seidel Laplacian Energy of a Graph”. Turkish Journal of Mathematics and Computer Science, vol. 17, no. 1, 2025, pp. 59-66, doi:10.47000/tjmcs.1528087.
Vancouver Yalçın NF, Kırmızı N. Minimum Covering Seidel Laplacian Energy of a Graph. TJMCS. 2025;17(1):59-66.