Araştırma Makalesi
BibTex RIS Kaynak Göster

Detection of some phenolic content of Grimmia ovalis (Hedw.) Lindb. and investigation of its antimicrobial activity with molecular docking technique

Yıl 2025, Cilt: 11 Sayı: 1, 52 - 58, 30.06.2025
https://doi.org/10.26672/anatolianbryology.1705249

Öz

This study aims to investigate the phenolic compounds and pharmacological potential of Grimmia ovalis (Hedw.) Lindb. to understand their bioactive potential and to pioneer future research. It also aims to be one of the first studies on G. ovalis's in silico bioactivity. HPLC analysis revealed the detection of some phenolic compounds in G. ovalis extract. The study revealed the in silico antimicrobial potential of some phenolic compounds. We calculated that compounds of 2,5-dihydroxybenzoic acid and caffeic acid would inhibit Staphylococcus aureus UDP-N-acetylenolpyruvylglucosamine reductase (MurB) at micromolar levels. We concluded that they interacted with residues crucial for antimicrobial activity on the mentioned macromolecule.

Etik Beyan

The authors have no competing interest to declare regarding the content of this article.

Destekleyen Kurum

The authors declare that no funding, grant or other support was received during the preparation of this article.

Kaynakça

  • Asakawa Y. Ludwiczuk A. 2018. Chemical Constituents of Bryophytes: Structures and Biological Activity. J Nat Prod. 81:3, 641-660. doi:10.1021/acs.jnatprod.6b01046.
  • Barwant M. Tripathi S. 2023. Research in Mycology Series-II (Issue June). Blue Duck Publications. Srinagar.
  • Benson T. E. Harris M. S. Choi G. H. Cialdella J. I. Herberg J. T. Martin J. P. Baldwin E. T. 2001. A Structural Variation for MurB:  X-ray Crystal Structure of Staphylococcus aureus UDP-N-Acetylenolpyruvylglucosamine Reductase (MurB). Biochemistry. 40:8, 2340-2350. doi:10.1021/bi002162d.
  • Delgadillo Moya C. 2015. Grimmia (Grimmiaceae, Bryophyta) in the Neotropics. Ciudad Universitaria, Delegación Coyoacán.
  • Eberhardt J. Santos-Martins D. Tillack A. F. Forli S. 2021. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. Journal of chemical information and modeling. 61:8, 3891-3898.
  • Elibol B. Ezer T. Kara R. Çelik G. Y. Çolak E. 2011. Antifungal and Antibacterial effects of some Acrocarpic Mosses. African Journal of Biotechnology. 10:6, 986-989.
  • Glime J. 2007. Bryophyte ecology. Volume 1: Physiological ecology. Michigan Technological University and the International Association of Bryologists. In: Houghton.
  • Hardman A. 2007. Terrestrial lichen and bryophyte communities of the Blue Mountains in Northeast Oregon.
  • Henderson D. M. 1961. Contribution to the bryophyte flora of Turkey. Notes from the Royal Botanic Garden Edinburgh. 10, 279-301.
  • Huey R. Morris G. M. Olson A. J. Goodsell D. S. 2007. A semiempirical free energy force field with charge‐based desolvation. Journal of computational chemistry. 28:6, 1145-1152.
  • Kürschner H. Frey W. 2011. Liverworts, mosses and hornworts of southwest Asia (Marchantiophyta, Bryophyta, Anthocerotophyta). Nova Hedwigia. Beihefte, Beih. 139.
  • Maestro S. 2024. Schrödinger Release 2024-3: LLC, New York, NY.
  • Peters K. Gorzolka K. Bruelheide H. Neumann S. 2018. Seasonal variation of secondary metabolites in nine different bryophytes. Ecology and Evolution. 8:17, 9105-9117.
  • Pirisi F. M. Cabras P. Cao C. F. Migliorini M. Muggelli M. 2000. Phenolic compounds in virgin olive oil. 2. Reappraisal of the extraction, HPLC separation, and quantification procedures. Journal of agricultural and food chemistry. 48:4, 1191-1196.
  • Rios J.-L. Recio M. C. 2005. Medicinal plants and antimicrobial activity. Journal of ethnopharmacology, 100:1-2, 80-84.
  • Unver T. Uslu H. Gurhan I. Goktas B. 2024. Screening of phenolic components and antimicrobial properties of Iris persica L. subsp. persica extracts by in vitro and in silico methods. Food Science & Nutrition. 12:9, 6578-6594.
  • Veneziani G. Esposto S. Taticchi A. Urbani S. Selvaggini R. Sordini B. Servili M. 2018. Characterization of phenolic and volatile composition of extra virgin olive oil extracted from six Italian cultivars using a cooling treatment of olive paste. LWT. 87: 523-528.

Grimmia ovalis (Hedw.) Lindb. Türünün Bazı Fenolik Bileşiklerinin Belirlenmesi ve Moleküler Yerleştirme Tekniği ile Antimikrobiyal Aktivitesinin Araştırılması

Yıl 2025, Cilt: 11 Sayı: 1, 52 - 58, 30.06.2025
https://doi.org/10.26672/anatolianbryology.1705249

Öz

Bu çalışma, Grimmia ovalis (Hedw.) Lindb.'in fenolik bileşenlerini ve farmakolojik potansiyelini araştırmayı, biyoaktif potansiyellerini anlamayı ve gelecekteki araştırmalara öncü olmayı amaçlamaktadır. Bununla beraber in silico biyoaktivite açısından G. ovalis üzerine yapılan ilk çalışmalardan biri olmayı hedeflemektedir. HPLC analizi, G. ovalis özütünün bazı fenolik bileşiklerinin tespitini ortaya koymuştur. Bazı fenolik bileşiklerin in silico antimikrobiyal potansiyeli ortaya çıkarılmıştır. 2,5-Dihidroksibenzoik asit ve Kafeik asit bileşiklerinin, Staphylococcus aureus UDP-N-asetilenolpiruvil glukozamin redüktaz (MurB) üzerinde mikromolar düzeyde inhibisyon yapacağı hesaplanmıştır. Bahsi geçen makromolekül üzerinde antimikrobiyal aktivite için önemli olan kalıntılar ile etkileşime girdiği sonucuna varılmıştır.

Etik Beyan

Bu araştırma, insan veya hayvan deneklerini içermemektedir ve bu nedenle etik onay gerektirmemektedir.

Destekleyen Kurum

Yazarlar, bu yazının hazırlanması sırasında herhangi bir fon, hibe veya başka bir destek alınmadığını beyan ederler.

Kaynakça

  • Asakawa Y. Ludwiczuk A. 2018. Chemical Constituents of Bryophytes: Structures and Biological Activity. J Nat Prod. 81:3, 641-660. doi:10.1021/acs.jnatprod.6b01046.
  • Barwant M. Tripathi S. 2023. Research in Mycology Series-II (Issue June). Blue Duck Publications. Srinagar.
  • Benson T. E. Harris M. S. Choi G. H. Cialdella J. I. Herberg J. T. Martin J. P. Baldwin E. T. 2001. A Structural Variation for MurB:  X-ray Crystal Structure of Staphylococcus aureus UDP-N-Acetylenolpyruvylglucosamine Reductase (MurB). Biochemistry. 40:8, 2340-2350. doi:10.1021/bi002162d.
  • Delgadillo Moya C. 2015. Grimmia (Grimmiaceae, Bryophyta) in the Neotropics. Ciudad Universitaria, Delegación Coyoacán.
  • Eberhardt J. Santos-Martins D. Tillack A. F. Forli S. 2021. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. Journal of chemical information and modeling. 61:8, 3891-3898.
  • Elibol B. Ezer T. Kara R. Çelik G. Y. Çolak E. 2011. Antifungal and Antibacterial effects of some Acrocarpic Mosses. African Journal of Biotechnology. 10:6, 986-989.
  • Glime J. 2007. Bryophyte ecology. Volume 1: Physiological ecology. Michigan Technological University and the International Association of Bryologists. In: Houghton.
  • Hardman A. 2007. Terrestrial lichen and bryophyte communities of the Blue Mountains in Northeast Oregon.
  • Henderson D. M. 1961. Contribution to the bryophyte flora of Turkey. Notes from the Royal Botanic Garden Edinburgh. 10, 279-301.
  • Huey R. Morris G. M. Olson A. J. Goodsell D. S. 2007. A semiempirical free energy force field with charge‐based desolvation. Journal of computational chemistry. 28:6, 1145-1152.
  • Kürschner H. Frey W. 2011. Liverworts, mosses and hornworts of southwest Asia (Marchantiophyta, Bryophyta, Anthocerotophyta). Nova Hedwigia. Beihefte, Beih. 139.
  • Maestro S. 2024. Schrödinger Release 2024-3: LLC, New York, NY.
  • Peters K. Gorzolka K. Bruelheide H. Neumann S. 2018. Seasonal variation of secondary metabolites in nine different bryophytes. Ecology and Evolution. 8:17, 9105-9117.
  • Pirisi F. M. Cabras P. Cao C. F. Migliorini M. Muggelli M. 2000. Phenolic compounds in virgin olive oil. 2. Reappraisal of the extraction, HPLC separation, and quantification procedures. Journal of agricultural and food chemistry. 48:4, 1191-1196.
  • Rios J.-L. Recio M. C. 2005. Medicinal plants and antimicrobial activity. Journal of ethnopharmacology, 100:1-2, 80-84.
  • Unver T. Uslu H. Gurhan I. Goktas B. 2024. Screening of phenolic components and antimicrobial properties of Iris persica L. subsp. persica extracts by in vitro and in silico methods. Food Science & Nutrition. 12:9, 6578-6594.
  • Veneziani G. Esposto S. Taticchi A. Urbani S. Selvaggini R. Sordini B. Servili M. 2018. Characterization of phenolic and volatile composition of extra virgin olive oil extracted from six Italian cultivars using a cooling treatment of olive paste. LWT. 87: 523-528.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Bilimi (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Zafer Çambay 0000-0002-1170-7525

Harun Uslu 0000-0001-8827-8557

Bünyamin Göktaş 0000-0003-2345-7313

Kevser Özdemir Bayçinar 0000-0002-5679-1417

Ümmügülsüm Tükenmez Emre 0000-0002-3224-1920

Mevlüt Alataş 0000-0003-0862-0258

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 23 Mayıs 2025
Kabul Tarihi 18 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 1

Kaynak Göster

APA Çambay, Z., Uslu, H., Göktaş, B., Özdemir Bayçinar, K., vd. (2025). Detection of some phenolic content of Grimmia ovalis (Hedw.) Lindb. and investigation of its antimicrobial activity with molecular docking technique. Anatolian Bryology, 11(1), 52-58. https://doi.org/10.26672/anatolianbryology.1705249

133041331413315 27016 27017 27017  27018