Crossed Corner of Lie Algebras
Yıl 2025,
Cilt: 14 Sayı: 2, 877 - 886, 30.06.2025
Işıl Zekiye Kurtuluş
Özgün Gürmen Alansal
Öz
In this work, we explore the concept of crossed corners in lie algebras and establish a connection between the category of crossed corners of lie algebras and the category of reduced simplicial lie algebras with Moore complex has length 2.
Etik Beyan
The study is complied with research and publication ethics.
Teşekkür
This study was developed from Işıl Zekiye Kurtuluş’s master's thesis.
Kaynakça
- J. H. C. Whitehead, “Combinatorial Homotopy II”, Bulletin of the American Mathematical Society, 55, 1949, pp. 453-496.
- C. Kassel, and J. L. Loday, “Extensions Centrales D’algébres de Lie”, Annales de l’institut Fourier, 33,1982, pp.119-142.
- G. J. Ellis, “Higher Dimensional Crossed Modules of Algebras”, Journal of Pure and Applied Algebra, 52, 1988, pp. 277-282.
- I. I. Akça, and Z. Arvasi, “Simplicial and Crossed Lie Algebras, Homology”, Homotopy and Applications, 4 (1), 2002, pp. 43-57.
- E. Ulualan, and E. Uslu, “Quadratic Modules for Lie Algebras”, Hacettepe Journal of Mathematics and Statistics, 40 (3), 2011, pp. 409-419.
- E. Özel, and U. E. Arslan, “On Quasi Quadratic Modules of Lie Algebras”, Journal of New Theory, (41), 2022, pp. 62-69.
- E. Ulualan, “Braiding for Categorical and Crossed Lie Algebras and Simplicial Lie Algebras”, Turkish Journal of Math., 31, 2007, pp. 239-255.
- A. Fernández-Fariña, and M. Ladra, “Braiding for categorical algebras and crossed modules of algebras I: Associative and Lie algebras”, Journal of Algebra and Its Applications, 19 (09), 2020, 2050176, 24 pages.
- E. Iğde, and K. Yılmaz, “Tensor products and crossed differential graded Lie algebras in the category of crossed complexes”. Symmetry, 2023, 15(9), 1646.
- M. Alp, “Characterization of crossed corner”, Algebras, Groups and Geometries, 16(2), 1999, pp. 173–182.
- M. Alp, “Applications of crossed corner”, Algebras, Groups and Geometries, 16(2), 1999, pp. 337–344.
- M. Alp, A. Bekir, and E. Ulualan, “Relation between crossed square and crossed corner”, Journal of Science and Technology of Dumlupınar University, 2001, (002), pp. 89-96.
- Ö. Gürmen Alansal, “Crossed corner and reduced simplicial commutative algebras”. Journal of New Theory, (45), 2023, pp. 95-104.
- H. Binbir, and Ö. Gürmen Alansal, “Değişmeli Cebirler için Çaprazlanmış Köşe ve Moore Bikompleks”. Kırşehir Ahi Evran Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(1), 2024, pp. 12-18.
- I. Kurtuluş, “Lie Cebirleri için Çaprazlanmış Köşe ve İlişkili Yapılar”. M.S. thesis, Institute of Graduate Education, Kütahya Dumlupınar University., Kütahya., Türkiye, 2025.
- M. Artin, and B. Mazur, “On the Van Kampen Theorem”, Topology, 5, 1966, pp. 179-189.
- Z. Arvasi, M. Koçak, and E. Ulualan, “Braided crossed modules and reduced simplicial groups”. Taiwanese Journal of Mathematics. 9(3), 2005, pp. 477-488.
- J. M. Casas. “Crossed extensions of Leibniz algebras”. Communications in Algebra, 27(12), 1999, pp. 6253-6272.
- J. M. Casas, M. Ladra, T. Pirashvili, “Crossed modules for Lie-Rinehart algebras”. Cent. Eur. Journal of Algebra, 274(1), 2004, pp. 192-201.
- A. Aytekin, “Categorical structures of Lie-Rinehart crossed module”. Turkish Journal of Math., 43(1), 2019, pp. 511-522.
- M. Koçak, and S. Çetin, “Higher Dimensional Leibniz-Rinehart Algebras”. Journal of Mathematical Sciences and Modelling, 7(1), 2024, pp. 45-50.
Lie Cebirlerinde Çaprazlanmış köşe
Yıl 2025,
Cilt: 14 Sayı: 2, 877 - 886, 30.06.2025
Işıl Zekiye Kurtuluş
Özgün Gürmen Alansal
Öz
Bu çalışmada, lie cebirlerinde çapraz köşeyi tanımlıyoruz ve lie cebirlerinde çapraz köşe kategorisi ile Moore kompleksinin uzunluğu 2 olan indirgenmiş simplisel lie cebirleri kategorisi arasındaki denkliği oluşturuyoruz.
Kaynakça
- J. H. C. Whitehead, “Combinatorial Homotopy II”, Bulletin of the American Mathematical Society, 55, 1949, pp. 453-496.
- C. Kassel, and J. L. Loday, “Extensions Centrales D’algébres de Lie”, Annales de l’institut Fourier, 33,1982, pp.119-142.
- G. J. Ellis, “Higher Dimensional Crossed Modules of Algebras”, Journal of Pure and Applied Algebra, 52, 1988, pp. 277-282.
- I. I. Akça, and Z. Arvasi, “Simplicial and Crossed Lie Algebras, Homology”, Homotopy and Applications, 4 (1), 2002, pp. 43-57.
- E. Ulualan, and E. Uslu, “Quadratic Modules for Lie Algebras”, Hacettepe Journal of Mathematics and Statistics, 40 (3), 2011, pp. 409-419.
- E. Özel, and U. E. Arslan, “On Quasi Quadratic Modules of Lie Algebras”, Journal of New Theory, (41), 2022, pp. 62-69.
- E. Ulualan, “Braiding for Categorical and Crossed Lie Algebras and Simplicial Lie Algebras”, Turkish Journal of Math., 31, 2007, pp. 239-255.
- A. Fernández-Fariña, and M. Ladra, “Braiding for categorical algebras and crossed modules of algebras I: Associative and Lie algebras”, Journal of Algebra and Its Applications, 19 (09), 2020, 2050176, 24 pages.
- E. Iğde, and K. Yılmaz, “Tensor products and crossed differential graded Lie algebras in the category of crossed complexes”. Symmetry, 2023, 15(9), 1646.
- M. Alp, “Characterization of crossed corner”, Algebras, Groups and Geometries, 16(2), 1999, pp. 173–182.
- M. Alp, “Applications of crossed corner”, Algebras, Groups and Geometries, 16(2), 1999, pp. 337–344.
- M. Alp, A. Bekir, and E. Ulualan, “Relation between crossed square and crossed corner”, Journal of Science and Technology of Dumlupınar University, 2001, (002), pp. 89-96.
- Ö. Gürmen Alansal, “Crossed corner and reduced simplicial commutative algebras”. Journal of New Theory, (45), 2023, pp. 95-104.
- H. Binbir, and Ö. Gürmen Alansal, “Değişmeli Cebirler için Çaprazlanmış Köşe ve Moore Bikompleks”. Kırşehir Ahi Evran Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(1), 2024, pp. 12-18.
- I. Kurtuluş, “Lie Cebirleri için Çaprazlanmış Köşe ve İlişkili Yapılar”. M.S. thesis, Institute of Graduate Education, Kütahya Dumlupınar University., Kütahya., Türkiye, 2025.
- M. Artin, and B. Mazur, “On the Van Kampen Theorem”, Topology, 5, 1966, pp. 179-189.
- Z. Arvasi, M. Koçak, and E. Ulualan, “Braided crossed modules and reduced simplicial groups”. Taiwanese Journal of Mathematics. 9(3), 2005, pp. 477-488.
- J. M. Casas. “Crossed extensions of Leibniz algebras”. Communications in Algebra, 27(12), 1999, pp. 6253-6272.
- J. M. Casas, M. Ladra, T. Pirashvili, “Crossed modules for Lie-Rinehart algebras”. Cent. Eur. Journal of Algebra, 274(1), 2004, pp. 192-201.
- A. Aytekin, “Categorical structures of Lie-Rinehart crossed module”. Turkish Journal of Math., 43(1), 2019, pp. 511-522.
- M. Koçak, and S. Çetin, “Higher Dimensional Leibniz-Rinehart Algebras”. Journal of Mathematical Sciences and Modelling, 7(1), 2024, pp. 45-50.