Araştırma Makalesi
BibTex RIS Kaynak Göster

Orthoptic Sets and Quadric Hypersurfaces

Yıl 2021, , 130 - 136, 30.09.2021
https://doi.org/10.33434/cams.917192

Öz

Orthoptic curves for the conics are well known.
It is the Monge's circle for ellipse and hyperbola, and for parabola it is its directrix.
These conics are level sets of quadratic functions in the plane.
We consider level sets of quadratic functions in higher dimension, known as quadric hypersurfaces.
For these hypersurfaces we present and study their orthoptic sets, which extend the idea of orthoptic curves for conics.

Destekleyen Kurum

Université de Sherbrooke, NSERC (Natural Sciences and Engineering Research Council of Canada)

Teşekkür

This work has been financially supported by an individual discovery grant from NSERC (Natural Sciences and Engineering Research Council of Canada)

Kaynakça

  • [1] I. Assem and J.C. Bustamante (2017). Ge ́ome ́trie analytique, Presses internationales Polytechnique, Montre ́al. ́
  • [2] Y. Ladegaillerie, Ge ́ometrie affine, projective, euclidienne et anallagmatique, Ellipses Edition Marketing S.A., Paris, 2003.
  • [3] O.J. Staude, Fla ̈chen 2. Ordnung und ihre Systeme und Durchdringungskurven. Encyklopa ̈die der math., Wiss.III.2.1, no. C2, 161-256, B.G. Teubner, Leipzig, 2015.
  • [4] G. Glaeser, H. Stachel, B. Odehnal, The Universe of Conics, Springer Spektrum, Springer-Verlag Berlin Heidelberg, 2016.
  • [5] B. Odehnal, H. Stachel, G. Glaeser, The Universe of Quadrics, Springer Spektrum, Springer-Verlag Berlin Heidelberg, 2020.
Yıl 2021, , 130 - 136, 30.09.2021
https://doi.org/10.33434/cams.917192

Öz

Kaynakça

  • [1] I. Assem and J.C. Bustamante (2017). Ge ́ome ́trie analytique, Presses internationales Polytechnique, Montre ́al. ́
  • [2] Y. Ladegaillerie, Ge ́ometrie affine, projective, euclidienne et anallagmatique, Ellipses Edition Marketing S.A., Paris, 2003.
  • [3] O.J. Staude, Fla ̈chen 2. Ordnung und ihre Systeme und Durchdringungskurven. Encyklopa ̈die der math., Wiss.III.2.1, no. C2, 161-256, B.G. Teubner, Leipzig, 2015.
  • [4] G. Glaeser, H. Stachel, B. Odehnal, The Universe of Conics, Springer Spektrum, Springer-Verlag Berlin Heidelberg, 2016.
  • [5] B. Odehnal, H. Stachel, G. Glaeser, The Universe of Quadrics, Springer Spektrum, Springer-Verlag Berlin Heidelberg, 2020.
Toplam 5 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

François Dubeau

Yayımlanma Tarihi 30 Eylül 2021
Gönderilme Tarihi 15 Nisan 2021
Kabul Tarihi 2 Ağustos 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Dubeau, F. (2021). Orthoptic Sets and Quadric Hypersurfaces. Communications in Advanced Mathematical Sciences, 4(3), 130-136. https://doi.org/10.33434/cams.917192
AMA Dubeau F. Orthoptic Sets and Quadric Hypersurfaces. Communications in Advanced Mathematical Sciences. Eylül 2021;4(3):130-136. doi:10.33434/cams.917192
Chicago Dubeau, François. “Orthoptic Sets and Quadric Hypersurfaces”. Communications in Advanced Mathematical Sciences 4, sy. 3 (Eylül 2021): 130-36. https://doi.org/10.33434/cams.917192.
EndNote Dubeau F (01 Eylül 2021) Orthoptic Sets and Quadric Hypersurfaces. Communications in Advanced Mathematical Sciences 4 3 130–136.
IEEE F. Dubeau, “Orthoptic Sets and Quadric Hypersurfaces”, Communications in Advanced Mathematical Sciences, c. 4, sy. 3, ss. 130–136, 2021, doi: 10.33434/cams.917192.
ISNAD Dubeau, François. “Orthoptic Sets and Quadric Hypersurfaces”. Communications in Advanced Mathematical Sciences 4/3 (Eylül 2021), 130-136. https://doi.org/10.33434/cams.917192.
JAMA Dubeau F. Orthoptic Sets and Quadric Hypersurfaces. Communications in Advanced Mathematical Sciences. 2021;4:130–136.
MLA Dubeau, François. “Orthoptic Sets and Quadric Hypersurfaces”. Communications in Advanced Mathematical Sciences, c. 4, sy. 3, 2021, ss. 130-6, doi:10.33434/cams.917192.
Vancouver Dubeau F. Orthoptic Sets and Quadric Hypersurfaces. Communications in Advanced Mathematical Sciences. 2021;4(3):130-6.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..