Araştırma Makalesi
BibTex RIS Kaynak Göster

EFFECT OF DIFFERENT CULTURE MEDIA, INITIAL pH, INCUBATION TEMPERATURE, AND CARBON SOURCES ON GROWTH AND BACTERIOCIN PRODUCTION OF ENTEROCOCCUS MUNDTII YB6.30

Yıl 2025, Cilt: 50 Sayı: 2, 245 - 259, 14.04.2025
https://doi.org/10.15237/gida.GD25029

Öz

This study investigated the effects of various factors on the production of mundticin-KS in the Enterococcus mundtii YB6.30 strain, previously isolated from Sucuk, a dry-fermented sausage. The examined factors included the culture medium (de Man, Rogosa, and Sharpe broth; Brain Heart Infusion broth; M17 broth; Luria-Bertani broth; and Trypticase Soy Broth), initial medium pH (4.5, 5.5, 6.2, 7.4, and 8.5), incubation temperature (25°C, 30°C, 37°C, and 40°C), carbon source (glucose, fructose, lactose, or sucrose), and sucrose concentration (1%, 2%, 3%, 4%, 5%, 7.5%, and 10%). A one-factor-at-a-time (OFAT) approach was employed to determine the factors influencing bacteriocin production. Statistical analysis revealed that optimal mundticin-KS production by E. mundtii YB6.30 was achieved after 6 and 8 hours of incubation at 30°C in modified MRS broth medium, adjusted to an initial pH of 6.2 with the addition of 1% (w/v) sucrose. The bacteriocin activity under these conditions was measured at 1495.62±29.93 AU/mL at the 6th hour and 1567.21±26.27 AU/mL at the 8th hour (P>0.05).

Teşekkür

ACKNOWLEDGMENTS The authors are grateful to Assoc. Prof. Dr. Özgür Koşkan (Isparta University of Applied Sciences, Department of Biometry and Genetics, Isparta, Türkiye) for the statistical analysis of the research data.

Kaynakça

  • Abbasiliasi, S., Tan, J.S., İbrahim, T.A.T., Ramanan, R.N., Vakhshiteh, F., Mustafa, S., Ling, T.C., Rahim, R.A., Ariff, A.B. (2012). Isolation of Pediococcus acidilactici Kp10 with ability to secrete bacteriocin-like inhibitory substance from milk products for applications in food industry. BMC Microbiology, 12: 260. https://doi.org/10.1186/ 1471-2180-12-260
  • Ahmad, V., Khan, M.S., Jamal, Q.M.S., Alzohairy, M.A., Karaawi, M.A., Siddiqui, S.D. (2017). Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. International Journal of Antimicrobial Agents, 49(1): 1–11. https://doi.org/10.1016/ j.ijantimicag.2016.08.016
  • Akpınar Kankaya, D., Tuncer, Y. (2020). Antibiotic resistance in vancomycin-resistant lactic acid bacteria (VRLAB) isolated from foods of animal origin. Journal of Food Processing and Preservation, e14468. https://doi.org/ 10.1111/jfpp.14468
  • Almeida-Santos, A.C., Novais, C., Peixe, L., Freitas, A.R. (2021). Enterococcus spp. as a producer and target of bacteriocins: a double-edged sword in the antimicrobial resistance crisis context. Antibiotics, 10: 1215. https://doi.org/ 10.3390/antibiotics10101215
  • Altınkaynak, T., Tuncer, Y. (2020). Fermente sucuktan izole edilen antilisterial Enterococcus mundtii YB6.30 tarafından üretilen bakteriyosinin karakterizasyonu. Gıda/The Journal of Food, 45(5): 963-976. https://doi.org/10.15237/ gida.GD20081
  • Álvarez-Cisneros, Y.M., Ponce-Alquicira, E. (2019). Antibiotic resistance in lactic acid bacteria. In: Antimicrobial Resistance - A Global Threat. Kumar, Y. (ed), IntechOpen, http://dx.doi.org/ 10.5772/intechopen.80624.
  • Bayram, M., Yıldırım, Z. (2016). Beyaz peynirden bakteriyosin üreten bakterinin (Enterococcus faecium) izolasyonu ve bakteriyosinin karakterizayonu. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 13: 103-115.
  • Bisht, V., Das, B., Navani, N.K. (2025). Bacteriocins sourced from traditional fermented foods for ensuring food safety: the microbial guards. Journal of the Science of Food Agriculture, https://doi.org/10.1002/jsfa.13783
  • Cladera-Olivera, F., Caron, G.R., Brandelli, A. (2004). Bacteriocin production by Bacillus licheniformis strain P40 in cheese whey using response surface methodology. Biochemical Engineering Journal, 21(1): 53-58. https://doi.org/ 10.1016/j.bej.2004.05.002
  • De Kwaadsteniet, M., Todorov, S.D., Knoetze, H., Dicks, L.M.T. (2005). Characterization of a 3944 Da bacteriocin, produced by Enterococcus mundtii ST15, with activity against Gram-positive and Gram-negative bacteria. International Journal of Food Microbiology, 105(3): 433-444. https://doi.org/10.1016/j.ijfoodmicro.2005.03.021
  • De Souza, E.L., de Oliveira, K.Á.R., de Oliveira, M.E.G. (2023). Influence of lactic acid bacteria metabolites on physical and chemical food properties. Current Opinion in Food Science, 49: 100981. https://doi.org/10.1016/ j.cofs.2022.100981.
  • Feng, G., Guron, G.K.P., Churey, J.J., Worobo, R.W. (2009). Characterization of mundticin L, a class IIa anti-listeria bacteriocin from Enterococcus mundtii CUGF08. Applied and Environmental Microbiology, 75(17): 5708-5713. https://doi.org/ 10.1128/AEM.00752-09
  • Fguira, I.B., Fourati, Z., Kamoun, F., Tounsi, S., Jaoua, S. (2014). Isolation of the Bacillus thuringiensis plasmid carrying bacthuricin F4 coding genes and evidence of its conjugative transfer. The Journal of Infection in Developing Countries, 8(6): 727-732. https://doi.org/ 10.3855/jidc.3552
  • Franz, C.M.A.P., Van Belkum, M.J., Holzapfel, W.H., Abriouel, H., Gálvez, A. (2007). Diversity of enterococcal bacteriocins and their grouping in a new classification cheme. FEMS Microbiology Reviews, 31(3): 293-310. https://doi.org/10.1111/ j.1574-6976.2007.00064.x
  • Garneau, S., Martin, N.I., Vederas, J.C. (2002). Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie, 84(5-6): 577-592. https://doi.org/10.1016/s0300-9084(02)01414-1
  • Garsa, A.K., Kumariya, R., Sood, S.K., Kumar, A., Kapila, S. (2014). Bacteriocin production and different strategies for their recovery and purification. Probiotics and Antimicrobial Proteins, 6(1): 47-58. https://doi.org/10.1007/s12602-013-9153-z
  • Gök Charyyev, M., Özden Tuncer, B., Akpınar Kankaya, D., Tuncer, Y. (2019). Bacteriocinogenic properties and safety evaluation of Enterococcus faecium YT52 isolated from Boza, a traditional cereal based fermented beverage. Journal of Consumer Protection and Food Safety, 14(1): 41-53. https://doi.org/10.1007/ s00003-019-01213-9
  • Graham, K., Stack, H., Rea, R. (2020). Safety, beneficial and technological properties of enterococci for se in functional food applications–a review. Critical Reviews in Food Science and Nutrition, 10: 1-26. https://doi.org/ 10.1007/s00003-019-01213-9
  • Hanchi, H., Mottawea, W., Sebei, K., Hammami, R. (2018). The genus Enterococcus: between probiotic potential and safety concerns-an update. Frontiers in Microbiology, 9: 1791. https://doi.org/ 10.3389/fmicb.2018.01791
  • Jawan, R., Abbasiliasi, S., Tan, J.S., Mustafa, S., Halim, M., Ari, A.B. (2020). Influence of culture conditions and medium compositions on the production of bacteriocin-like inhibitory substances by Lactococcus lactis Gh1. Microorganisms, 8(10): 1454. https://doi.org/10.3390/ microorganisms8101454
  • Karnwal, A., Malik, T. (2024) Exploring the untapped potential of naturally occurring antimicrobial compounds: novel advancements in food preservation for enhanced safety and sustainability. Frontiers in Sustainable Food Systems, 8: 1307210. https://doi.org/10.3389/ fsufs.2024.1307210
  • Kasimin, M.E., Shamsuddin, S., Molujin, A.M., Sabullah, M.K., Gansau, J.A., Jawan, R. (2022). Enterocin: promising biopreservative produced by Enterococcus sp. Microorganisms, 10: 684. https://doi.org/10.3390/microorganisms10040684
  • Kawamoto, S., Shima, J., Sato, R., Eguchi, T., Ohmomo, S., Shibato, J., Horikoshi, N., Takeshita, K., Sameshima, T. (2002). Biochemical and genetic characterization of mundticin KS, an antilisterial peptide produced by Enterococcus mundtii NFRI 7393. Applied and Environmental Microbiology, 68(8): 3830-3840. https://doi.org/ 10.1128/AEM.68.8.3830-3840.2002
  • Kuhan Sreedharan, D., Abbasiliasi, S., Mohamed, M.S., Ng, Z.J., Ariff, A.B., Lee, C.K., Tan, J.S. (2021). Fermentation strategies for improving the production of bacteriocin-like inhibitory substances by Lactobacillus brevis C23 with ntrient supplementation, pH, and temperature variations. Journal of Food Processing and Preservation, 45(11): 5914. https://doi.org/10.1111/jfpp.15914
  • Laranjo, M., Potes, M.E., Elias, M. (2019). Role of starter cultures on the safety of fermented meat products. Frontiers in Microbiology, 10: 1–11. https://doi.org/10.3389/ fmicb.2019.00853
  • Malheiro, P.S., Sant’Anna, V., Todorov, S.D., Franco, B.D.G.M. (2015). Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. sakei 2a. Brazilian Journal of Microbiology, 46(1): 825-834. http://dx.doi.org/10.1590/ S1517-838246320140279
  • Martínez-Bueno, M., Galvez, A.,Valdivia, E., Maqueda, M. (1990). A transferable plasmid associated with AS-48 production in Enterococcus faecalis. Journal of Bacteriology, 177(5): 2817-2818. https://doi.org/10.1128/jb.172.5.2817-2818.1990
  • Mendeş, M. (2019). İstatistiksel yöntemler ve deneme planlanması. Kriter Yayınevi, 636s., İstanbul.
  • Mohd Rasid, N.H., Abdul Halid, N., Song, A. A.-L., Sabri, S., Saari, N., Hasan, H. (2023). Effects of individual and combined fermentation factors on antimicrobial activity of nisin by Lactococcus lactis ATCC 11454. Molecular Biotechnology, 65: 861–870. https://doi.org/10.1007/s12033-022-00584-z
  • Miljkovic, M., Lozo, J., Mirkovic, N., O’Connor, P.M., Malesevic, M., Jovcic, B., Cotter, P.D., Kojic, M. (2018). Functional characterization of the lactolisterin BU gene cluster of Lactococcus lactis subsp. lactis BGBU1-4. Frontiers in Microbiology, 9: 2774. https://doi.org/ 10.3389/fmicb.2018.02774
  • Oliveira, F.S., da Silva Rodrigues, R., Cavicchioli, V.Q., de Carvalho, A.F., Nero, L.A. (2024). Influence of different culture media on the antimicrobial activity of Pediococcus pentosaceus ST65ACC against Listeria monocytogenes. Brazilian Journal of Microbiology, 55: 2539–2545. https://doi.org/10.1007/s42770-024-01391-1
  • Oliveira, M., Ferreira, V., Magalhães, R., Teixeira, P. (2018). Biocontrol strategies for mediterranean-style fermented sausages. Food Research International, 103: 438-449. https://doi.org/10.1016/j.foodres.2017.10.048
  • Öztürk, H., Geniş, B., Özden Tuncer, B., Tuncer, Y. (2023). Bacteriocin production and technological properties of Enterococcus mundtii and Enterococcus faecium strains isolated from sheep and goat colostrum. Veterinary Research Communications, 47: 1321–1345. https://doi.org/10.1007/s11259-023-10080-7
  • Parlindungan, E., Dekiwadia, C., Fones, O.A.H. (2021). Factors that influence growth and bacteriocin production in Lactiplantibacillus plantarum B21. Process Biochemistry, 107: 18–26. https://doi.org/10.1016/j.procbio.2021.05.009
  • Pattnaik, P., Grover, S., Batish, V.K. (2005). Effect of environmental factors on production of ichenin, a chromosomally encoded bacteriocin-like compound produced by Bacillus licheniformis 26L-10/3RA. Microbiological Research, 160(2): 213-218. https://doi.org/10.1016/ j.micres.2005.01.006
  • Ren, B., Wu, W., Soladoye, O.P., Bak, K.H., Fu, Y., Zhang, Y. (2021). Application of biopreservatives in meat preservation: a review. International Journal of Food Sciınce and Technology, 56: 6124-6141. https://doi.org/10.1111/ ijfs.15307
  • Reuben, R.C., Torres, C. (2024). Bacteriocins: potentials and prospects in health and agrifood systems. Archives of Microbiology, 206: 233. https://doi.org/10.1007/s00203-024-03948-y
  • Sabia, C., Manicardi, G., Messi, P., de Niederhäusern, S., Bondi, M. (2002). Enterocin 416K1, an antilisterial bacteriocin produced by Enterococcus casseliflavus IM 416K1 isolated from Italian sausages. International Journal of Food Microbiology, 75(1-1): 163-170. https://doi.org/ 10.1016/S0168-1605(01)00741-3
  • Sakoui, S., Derdak, R., Pop, O.L., Vodnar, D.C., Jouga, F., Teleky, B.-E., Addoum, B., Simon, E., Suharoschi, R., Soukri, A., El Khalfi, B. (2024). Exploring technological, safety and probiotic properties of Enterococcus strains: impact on rheological parameters in fermented milk. Foods, 13: 586. https://doi.org/10.3390/ foods13040586
  • Saraiva, M.A.F., Birri, D.J., Brede, D.A., Baracat-Pereira, M.C., de Queiroz, V.M., Nes, I.F., de Moraes, A.C. (2020). Nisin Z production by wild strains of Lactococcus lactis isolated from Brazilian (Italian Type) fermented sausage. International Journal of Microbiology, ID9309628. https://doi.org/10.1155/2020/9309628
  • Schelegueda, L.I., Vallejo, M., Gliemmo, M.F., Marguet, E.R., Campos, C.A. (2015). Synergistic antimicrobial action and potential application for fish preservation of bacteriocin produced by Enterococcus mundtii isolated from Odontesthes platensis. LWT-Food Science and Technology, 64(2): 794-801. https://doi.org/10.1016/ j.lwt.2015.06.017
  • Sidek, N.L.M., Halim, M., Tan, J.S., Abbasiliasi, S., Mustafa, S., Ariff, A.B. (2018). Stability of bacteriocin-like inhibitory substance (BLIS) produced by Pediococcus acidilactici kp10 at different extreme conditions. BioMed Research International, 27: 5973484 https://doi.org/10.1155/ 2018/5973484
  • Tareq, I., Luti, K.J.K. (2022). Anapplication of bacteriocin-producing vaginal Lactobacillus crispatus IS30 in a gel formula against some vaginal pathogens. Iraqi Journal of Science, 63(2): 491-507. https://doi.org/10.24996/ijs.2022.63.2.7
  • Todorov, S.D., Dicks, L.M.T. (2009). Effect of modified MRS medium on production and purification of antimicrobial peptide ST4SA produced by Enterococcus mundtii. Anaerobe, 15(3): 65-73. https://doi.org/10.1016/ j.anaerobe.2008.11.002
  • Todorov, S.D., Oliveira, R.P.S., Vaz-Velho, M. (2012). Media optimization of bacteriocin ST22Ch production by Lactobacillus sakei ST22Ch isolated from Salpicão, a traditional meat-product from Portugal. Chemical Engineering Transactions, 27: 283–288. https://doi.org/10.3303/CET1227048
  • Turgis, M., Vu, K.D., Millette, M., Dupont, C., Lacroix, M. (2016). Influence of environmental factors on bacteriocin production by human isolates of Lactococcus lactis MM19 and Pediococcus acidilactici MM33. Probiotics and Antimicrobial Proteins, 8(1): 53–59. https://doi.org/10.1007/ s12602-015-9204-8
  • Valledor, S.J.D., Dioso, C.M., Bucheli, J.E.V., Park, Y.J., Suh, D.H., Jung, E.S., Kim, B., Holzapfel, W.H., Todorov, S.D. (2022). Characterization and safety evaluation of two beneficial, enterocin-producing Enterococcus faecium strains isolated from Kimchi, a Korean fermented cabbage. Food Microbiology, 102: 103886. https://doi.org/10.1016/j.fm.2021.103886
  • Yang, E., Fan, L., Yan, J., Jiang, Y., Doucette, C., Fillmore, S., Walker, B. (2018). Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express, 8: 10. https://doi.org/10.1186/s13568-018-0536-0
  • Zendo, T., Eungruttanagorn, N., Fujioka, S., Tashiro, Y., Nomura, K., Sera, Y., Kobayashi, G., Nakayama, J., Ishizaki, A., Sonomoto, K. (2005). Identification and production of a bacteriocin from Enterococcus mundtii QU2 isolated from soybean. Journal of Applied Microbiology, 99(5): 1181-1190. https://doi.org/10.1111/j.1365-2672.2005.02704.x

FARKLI KÜLTÜR BESİYERİ, BAŞLANGIÇ PH’SI, İNKÜBASYON SICAKLIĞI VE KARBON KARNAKLARININ ENTEROCOCCUS MUNDTII YB6.30’UN GELİŞİMİ VE BAKTERİYOSİN ÜRETİMİ ÜZERİNE ETKİSİ

Yıl 2025, Cilt: 50 Sayı: 2, 245 - 259, 14.04.2025
https://doi.org/10.15237/gida.GD25029

Öz

Bu çalışma, daha önce kuru fermente sucuklardan izole edilen Enterococcus mundtii YB6.30 suşunda mundtisin-KS üretimi üzerine çeşitli faktörlerin etkilerini incelemiştir. İncelenen faktörler arasında kültür ortamı (de Man, Rogosa ve Sharpe broth; Brain Heart Infusion broth; M17; Luria-Bertani broth; ve Tryptic Soy broth), başlangıç pH'ı (4.5, 5.5, 6.2, 7.4 ve 8.5), inkübasyon sıcaklığı (25°C, 30°C, 37°C ve 40°C), karbon kaynağı (glikoz, fruktoz, laktoz veya sakkaroz) ve sakkaroz konsantrasyonu (%1, %2, %3, %4, %5, %7.5 ve %10) yer almaktadır. Bakteriyosin üretimini etkileyen faktörleri belirlemek için one-factor-at-a-time (OFAT) yaklaşımı kullanılmıştır. İstatistiksel analiz, E. mundtii YB6.30 tarafından optimal mundtisin-KS üretiminin, 1% (w/v) sakkaroz eklenmiş başlangıç pH'ı 6.2’ye ayarlanmış modifiye MRS broth besiyerinde 30°C'de 6 ve 8 saatlik inkübasyon sonrası elde edildiğini ortaya koymuştur. Bu koşullar altında bakteriyosin aktivitesi 6. saatte 1495.62±29.93 AU/mL ve 8. saatte 1567.21±26.27 AU/mL olarak ölçülmüştür (P>0.05).

Kaynakça

  • Abbasiliasi, S., Tan, J.S., İbrahim, T.A.T., Ramanan, R.N., Vakhshiteh, F., Mustafa, S., Ling, T.C., Rahim, R.A., Ariff, A.B. (2012). Isolation of Pediococcus acidilactici Kp10 with ability to secrete bacteriocin-like inhibitory substance from milk products for applications in food industry. BMC Microbiology, 12: 260. https://doi.org/10.1186/ 1471-2180-12-260
  • Ahmad, V., Khan, M.S., Jamal, Q.M.S., Alzohairy, M.A., Karaawi, M.A., Siddiqui, S.D. (2017). Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. International Journal of Antimicrobial Agents, 49(1): 1–11. https://doi.org/10.1016/ j.ijantimicag.2016.08.016
  • Akpınar Kankaya, D., Tuncer, Y. (2020). Antibiotic resistance in vancomycin-resistant lactic acid bacteria (VRLAB) isolated from foods of animal origin. Journal of Food Processing and Preservation, e14468. https://doi.org/ 10.1111/jfpp.14468
  • Almeida-Santos, A.C., Novais, C., Peixe, L., Freitas, A.R. (2021). Enterococcus spp. as a producer and target of bacteriocins: a double-edged sword in the antimicrobial resistance crisis context. Antibiotics, 10: 1215. https://doi.org/ 10.3390/antibiotics10101215
  • Altınkaynak, T., Tuncer, Y. (2020). Fermente sucuktan izole edilen antilisterial Enterococcus mundtii YB6.30 tarafından üretilen bakteriyosinin karakterizasyonu. Gıda/The Journal of Food, 45(5): 963-976. https://doi.org/10.15237/ gida.GD20081
  • Álvarez-Cisneros, Y.M., Ponce-Alquicira, E. (2019). Antibiotic resistance in lactic acid bacteria. In: Antimicrobial Resistance - A Global Threat. Kumar, Y. (ed), IntechOpen, http://dx.doi.org/ 10.5772/intechopen.80624.
  • Bayram, M., Yıldırım, Z. (2016). Beyaz peynirden bakteriyosin üreten bakterinin (Enterococcus faecium) izolasyonu ve bakteriyosinin karakterizayonu. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 13: 103-115.
  • Bisht, V., Das, B., Navani, N.K. (2025). Bacteriocins sourced from traditional fermented foods for ensuring food safety: the microbial guards. Journal of the Science of Food Agriculture, https://doi.org/10.1002/jsfa.13783
  • Cladera-Olivera, F., Caron, G.R., Brandelli, A. (2004). Bacteriocin production by Bacillus licheniformis strain P40 in cheese whey using response surface methodology. Biochemical Engineering Journal, 21(1): 53-58. https://doi.org/ 10.1016/j.bej.2004.05.002
  • De Kwaadsteniet, M., Todorov, S.D., Knoetze, H., Dicks, L.M.T. (2005). Characterization of a 3944 Da bacteriocin, produced by Enterococcus mundtii ST15, with activity against Gram-positive and Gram-negative bacteria. International Journal of Food Microbiology, 105(3): 433-444. https://doi.org/10.1016/j.ijfoodmicro.2005.03.021
  • De Souza, E.L., de Oliveira, K.Á.R., de Oliveira, M.E.G. (2023). Influence of lactic acid bacteria metabolites on physical and chemical food properties. Current Opinion in Food Science, 49: 100981. https://doi.org/10.1016/ j.cofs.2022.100981.
  • Feng, G., Guron, G.K.P., Churey, J.J., Worobo, R.W. (2009). Characterization of mundticin L, a class IIa anti-listeria bacteriocin from Enterococcus mundtii CUGF08. Applied and Environmental Microbiology, 75(17): 5708-5713. https://doi.org/ 10.1128/AEM.00752-09
  • Fguira, I.B., Fourati, Z., Kamoun, F., Tounsi, S., Jaoua, S. (2014). Isolation of the Bacillus thuringiensis plasmid carrying bacthuricin F4 coding genes and evidence of its conjugative transfer. The Journal of Infection in Developing Countries, 8(6): 727-732. https://doi.org/ 10.3855/jidc.3552
  • Franz, C.M.A.P., Van Belkum, M.J., Holzapfel, W.H., Abriouel, H., Gálvez, A. (2007). Diversity of enterococcal bacteriocins and their grouping in a new classification cheme. FEMS Microbiology Reviews, 31(3): 293-310. https://doi.org/10.1111/ j.1574-6976.2007.00064.x
  • Garneau, S., Martin, N.I., Vederas, J.C. (2002). Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie, 84(5-6): 577-592. https://doi.org/10.1016/s0300-9084(02)01414-1
  • Garsa, A.K., Kumariya, R., Sood, S.K., Kumar, A., Kapila, S. (2014). Bacteriocin production and different strategies for their recovery and purification. Probiotics and Antimicrobial Proteins, 6(1): 47-58. https://doi.org/10.1007/s12602-013-9153-z
  • Gök Charyyev, M., Özden Tuncer, B., Akpınar Kankaya, D., Tuncer, Y. (2019). Bacteriocinogenic properties and safety evaluation of Enterococcus faecium YT52 isolated from Boza, a traditional cereal based fermented beverage. Journal of Consumer Protection and Food Safety, 14(1): 41-53. https://doi.org/10.1007/ s00003-019-01213-9
  • Graham, K., Stack, H., Rea, R. (2020). Safety, beneficial and technological properties of enterococci for se in functional food applications–a review. Critical Reviews in Food Science and Nutrition, 10: 1-26. https://doi.org/ 10.1007/s00003-019-01213-9
  • Hanchi, H., Mottawea, W., Sebei, K., Hammami, R. (2018). The genus Enterococcus: between probiotic potential and safety concerns-an update. Frontiers in Microbiology, 9: 1791. https://doi.org/ 10.3389/fmicb.2018.01791
  • Jawan, R., Abbasiliasi, S., Tan, J.S., Mustafa, S., Halim, M., Ari, A.B. (2020). Influence of culture conditions and medium compositions on the production of bacteriocin-like inhibitory substances by Lactococcus lactis Gh1. Microorganisms, 8(10): 1454. https://doi.org/10.3390/ microorganisms8101454
  • Karnwal, A., Malik, T. (2024) Exploring the untapped potential of naturally occurring antimicrobial compounds: novel advancements in food preservation for enhanced safety and sustainability. Frontiers in Sustainable Food Systems, 8: 1307210. https://doi.org/10.3389/ fsufs.2024.1307210
  • Kasimin, M.E., Shamsuddin, S., Molujin, A.M., Sabullah, M.K., Gansau, J.A., Jawan, R. (2022). Enterocin: promising biopreservative produced by Enterococcus sp. Microorganisms, 10: 684. https://doi.org/10.3390/microorganisms10040684
  • Kawamoto, S., Shima, J., Sato, R., Eguchi, T., Ohmomo, S., Shibato, J., Horikoshi, N., Takeshita, K., Sameshima, T. (2002). Biochemical and genetic characterization of mundticin KS, an antilisterial peptide produced by Enterococcus mundtii NFRI 7393. Applied and Environmental Microbiology, 68(8): 3830-3840. https://doi.org/ 10.1128/AEM.68.8.3830-3840.2002
  • Kuhan Sreedharan, D., Abbasiliasi, S., Mohamed, M.S., Ng, Z.J., Ariff, A.B., Lee, C.K., Tan, J.S. (2021). Fermentation strategies for improving the production of bacteriocin-like inhibitory substances by Lactobacillus brevis C23 with ntrient supplementation, pH, and temperature variations. Journal of Food Processing and Preservation, 45(11): 5914. https://doi.org/10.1111/jfpp.15914
  • Laranjo, M., Potes, M.E., Elias, M. (2019). Role of starter cultures on the safety of fermented meat products. Frontiers in Microbiology, 10: 1–11. https://doi.org/10.3389/ fmicb.2019.00853
  • Malheiro, P.S., Sant’Anna, V., Todorov, S.D., Franco, B.D.G.M. (2015). Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. sakei 2a. Brazilian Journal of Microbiology, 46(1): 825-834. http://dx.doi.org/10.1590/ S1517-838246320140279
  • Martínez-Bueno, M., Galvez, A.,Valdivia, E., Maqueda, M. (1990). A transferable plasmid associated with AS-48 production in Enterococcus faecalis. Journal of Bacteriology, 177(5): 2817-2818. https://doi.org/10.1128/jb.172.5.2817-2818.1990
  • Mendeş, M. (2019). İstatistiksel yöntemler ve deneme planlanması. Kriter Yayınevi, 636s., İstanbul.
  • Mohd Rasid, N.H., Abdul Halid, N., Song, A. A.-L., Sabri, S., Saari, N., Hasan, H. (2023). Effects of individual and combined fermentation factors on antimicrobial activity of nisin by Lactococcus lactis ATCC 11454. Molecular Biotechnology, 65: 861–870. https://doi.org/10.1007/s12033-022-00584-z
  • Miljkovic, M., Lozo, J., Mirkovic, N., O’Connor, P.M., Malesevic, M., Jovcic, B., Cotter, P.D., Kojic, M. (2018). Functional characterization of the lactolisterin BU gene cluster of Lactococcus lactis subsp. lactis BGBU1-4. Frontiers in Microbiology, 9: 2774. https://doi.org/ 10.3389/fmicb.2018.02774
  • Oliveira, F.S., da Silva Rodrigues, R., Cavicchioli, V.Q., de Carvalho, A.F., Nero, L.A. (2024). Influence of different culture media on the antimicrobial activity of Pediococcus pentosaceus ST65ACC against Listeria monocytogenes. Brazilian Journal of Microbiology, 55: 2539–2545. https://doi.org/10.1007/s42770-024-01391-1
  • Oliveira, M., Ferreira, V., Magalhães, R., Teixeira, P. (2018). Biocontrol strategies for mediterranean-style fermented sausages. Food Research International, 103: 438-449. https://doi.org/10.1016/j.foodres.2017.10.048
  • Öztürk, H., Geniş, B., Özden Tuncer, B., Tuncer, Y. (2023). Bacteriocin production and technological properties of Enterococcus mundtii and Enterococcus faecium strains isolated from sheep and goat colostrum. Veterinary Research Communications, 47: 1321–1345. https://doi.org/10.1007/s11259-023-10080-7
  • Parlindungan, E., Dekiwadia, C., Fones, O.A.H. (2021). Factors that influence growth and bacteriocin production in Lactiplantibacillus plantarum B21. Process Biochemistry, 107: 18–26. https://doi.org/10.1016/j.procbio.2021.05.009
  • Pattnaik, P., Grover, S., Batish, V.K. (2005). Effect of environmental factors on production of ichenin, a chromosomally encoded bacteriocin-like compound produced by Bacillus licheniformis 26L-10/3RA. Microbiological Research, 160(2): 213-218. https://doi.org/10.1016/ j.micres.2005.01.006
  • Ren, B., Wu, W., Soladoye, O.P., Bak, K.H., Fu, Y., Zhang, Y. (2021). Application of biopreservatives in meat preservation: a review. International Journal of Food Sciınce and Technology, 56: 6124-6141. https://doi.org/10.1111/ ijfs.15307
  • Reuben, R.C., Torres, C. (2024). Bacteriocins: potentials and prospects in health and agrifood systems. Archives of Microbiology, 206: 233. https://doi.org/10.1007/s00203-024-03948-y
  • Sabia, C., Manicardi, G., Messi, P., de Niederhäusern, S., Bondi, M. (2002). Enterocin 416K1, an antilisterial bacteriocin produced by Enterococcus casseliflavus IM 416K1 isolated from Italian sausages. International Journal of Food Microbiology, 75(1-1): 163-170. https://doi.org/ 10.1016/S0168-1605(01)00741-3
  • Sakoui, S., Derdak, R., Pop, O.L., Vodnar, D.C., Jouga, F., Teleky, B.-E., Addoum, B., Simon, E., Suharoschi, R., Soukri, A., El Khalfi, B. (2024). Exploring technological, safety and probiotic properties of Enterococcus strains: impact on rheological parameters in fermented milk. Foods, 13: 586. https://doi.org/10.3390/ foods13040586
  • Saraiva, M.A.F., Birri, D.J., Brede, D.A., Baracat-Pereira, M.C., de Queiroz, V.M., Nes, I.F., de Moraes, A.C. (2020). Nisin Z production by wild strains of Lactococcus lactis isolated from Brazilian (Italian Type) fermented sausage. International Journal of Microbiology, ID9309628. https://doi.org/10.1155/2020/9309628
  • Schelegueda, L.I., Vallejo, M., Gliemmo, M.F., Marguet, E.R., Campos, C.A. (2015). Synergistic antimicrobial action and potential application for fish preservation of bacteriocin produced by Enterococcus mundtii isolated from Odontesthes platensis. LWT-Food Science and Technology, 64(2): 794-801. https://doi.org/10.1016/ j.lwt.2015.06.017
  • Sidek, N.L.M., Halim, M., Tan, J.S., Abbasiliasi, S., Mustafa, S., Ariff, A.B. (2018). Stability of bacteriocin-like inhibitory substance (BLIS) produced by Pediococcus acidilactici kp10 at different extreme conditions. BioMed Research International, 27: 5973484 https://doi.org/10.1155/ 2018/5973484
  • Tareq, I., Luti, K.J.K. (2022). Anapplication of bacteriocin-producing vaginal Lactobacillus crispatus IS30 in a gel formula against some vaginal pathogens. Iraqi Journal of Science, 63(2): 491-507. https://doi.org/10.24996/ijs.2022.63.2.7
  • Todorov, S.D., Dicks, L.M.T. (2009). Effect of modified MRS medium on production and purification of antimicrobial peptide ST4SA produced by Enterococcus mundtii. Anaerobe, 15(3): 65-73. https://doi.org/10.1016/ j.anaerobe.2008.11.002
  • Todorov, S.D., Oliveira, R.P.S., Vaz-Velho, M. (2012). Media optimization of bacteriocin ST22Ch production by Lactobacillus sakei ST22Ch isolated from Salpicão, a traditional meat-product from Portugal. Chemical Engineering Transactions, 27: 283–288. https://doi.org/10.3303/CET1227048
  • Turgis, M., Vu, K.D., Millette, M., Dupont, C., Lacroix, M. (2016). Influence of environmental factors on bacteriocin production by human isolates of Lactococcus lactis MM19 and Pediococcus acidilactici MM33. Probiotics and Antimicrobial Proteins, 8(1): 53–59. https://doi.org/10.1007/ s12602-015-9204-8
  • Valledor, S.J.D., Dioso, C.M., Bucheli, J.E.V., Park, Y.J., Suh, D.H., Jung, E.S., Kim, B., Holzapfel, W.H., Todorov, S.D. (2022). Characterization and safety evaluation of two beneficial, enterocin-producing Enterococcus faecium strains isolated from Kimchi, a Korean fermented cabbage. Food Microbiology, 102: 103886. https://doi.org/10.1016/j.fm.2021.103886
  • Yang, E., Fan, L., Yan, J., Jiang, Y., Doucette, C., Fillmore, S., Walker, B. (2018). Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express, 8: 10. https://doi.org/10.1186/s13568-018-0536-0
  • Zendo, T., Eungruttanagorn, N., Fujioka, S., Tashiro, Y., Nomura, K., Sera, Y., Kobayashi, G., Nakayama, J., Ishizaki, A., Sonomoto, K. (2005). Identification and production of a bacteriocin from Enterococcus mundtii QU2 isolated from soybean. Journal of Applied Microbiology, 99(5): 1181-1190. https://doi.org/10.1111/j.1365-2672.2005.02704.x
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mikrobiyolojisi
Bölüm Makaleler
Yazarlar

Selma Küçükçiftci 0000-0002-5429-2585

Burak Geniş 0000-0002-7204-2176

Yasin Tuncer 0000-0002-2075-5027

Yayımlanma Tarihi 14 Nisan 2025
Gönderilme Tarihi 14 Şubat 2025
Kabul Tarihi 7 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 50 Sayı: 2

Kaynak Göster

APA Küçükçiftci, S., Geniş, B., & Tuncer, Y. (2025). EFFECT OF DIFFERENT CULTURE MEDIA, INITIAL pH, INCUBATION TEMPERATURE, AND CARBON SOURCES ON GROWTH AND BACTERIOCIN PRODUCTION OF ENTEROCOCCUS MUNDTII YB6.30. Gıda, 50(2), 245-259. https://doi.org/10.15237/gida.GD25029
AMA Küçükçiftci S, Geniş B, Tuncer Y. EFFECT OF DIFFERENT CULTURE MEDIA, INITIAL pH, INCUBATION TEMPERATURE, AND CARBON SOURCES ON GROWTH AND BACTERIOCIN PRODUCTION OF ENTEROCOCCUS MUNDTII YB6.30. GIDA. Nisan 2025;50(2):245-259. doi:10.15237/gida.GD25029
Chicago Küçükçiftci, Selma, Burak Geniş, ve Yasin Tuncer. “EFFECT OF DIFFERENT CULTURE MEDIA, INITIAL PH, INCUBATION TEMPERATURE, AND CARBON SOURCES ON GROWTH AND BACTERIOCIN PRODUCTION OF ENTEROCOCCUS MUNDTII YB6.30”. Gıda 50, sy. 2 (Nisan 2025): 245-59. https://doi.org/10.15237/gida.GD25029.
EndNote Küçükçiftci S, Geniş B, Tuncer Y (01 Nisan 2025) EFFECT OF DIFFERENT CULTURE MEDIA, INITIAL pH, INCUBATION TEMPERATURE, AND CARBON SOURCES ON GROWTH AND BACTERIOCIN PRODUCTION OF ENTEROCOCCUS MUNDTII YB6.30. Gıda 50 2 245–259.
IEEE S. Küçükçiftci, B. Geniş, ve Y. Tuncer, “EFFECT OF DIFFERENT CULTURE MEDIA, INITIAL pH, INCUBATION TEMPERATURE, AND CARBON SOURCES ON GROWTH AND BACTERIOCIN PRODUCTION OF ENTEROCOCCUS MUNDTII YB6.30”, GIDA, c. 50, sy. 2, ss. 245–259, 2025, doi: 10.15237/gida.GD25029.
ISNAD Küçükçiftci, Selma vd. “EFFECT OF DIFFERENT CULTURE MEDIA, INITIAL PH, INCUBATION TEMPERATURE, AND CARBON SOURCES ON GROWTH AND BACTERIOCIN PRODUCTION OF ENTEROCOCCUS MUNDTII YB6.30”. Gıda 50/2 (Nisan 2025), 245-259. https://doi.org/10.15237/gida.GD25029.
JAMA Küçükçiftci S, Geniş B, Tuncer Y. EFFECT OF DIFFERENT CULTURE MEDIA, INITIAL pH, INCUBATION TEMPERATURE, AND CARBON SOURCES ON GROWTH AND BACTERIOCIN PRODUCTION OF ENTEROCOCCUS MUNDTII YB6.30. GIDA. 2025;50:245–259.
MLA Küçükçiftci, Selma vd. “EFFECT OF DIFFERENT CULTURE MEDIA, INITIAL PH, INCUBATION TEMPERATURE, AND CARBON SOURCES ON GROWTH AND BACTERIOCIN PRODUCTION OF ENTEROCOCCUS MUNDTII YB6.30”. Gıda, c. 50, sy. 2, 2025, ss. 245-59, doi:10.15237/gida.GD25029.
Vancouver Küçükçiftci S, Geniş B, Tuncer Y. EFFECT OF DIFFERENT CULTURE MEDIA, INITIAL pH, INCUBATION TEMPERATURE, AND CARBON SOURCES ON GROWTH AND BACTERIOCIN PRODUCTION OF ENTEROCOCCUS MUNDTII YB6.30. GIDA. 2025;50(2):245-59.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/