BibTex RIS Kaynak Göster

Characterization and Extendability of P k Sets For k=3(4)

Yıl 2010, Cilt: 23 Sayı: 3, 295 - 297, 06.07.2010

Öz

ABSTRACT

In this paper the characterization of certain families of the Pk   sets for k=3(4) are given, and it is shown that some of them can not be extended.

 

Key Words: Diophantine Equation, Congruence, Legendre Symbol

Kaynakça

  • Dickson, L. E., “History of the theory of numbers”, Chelsea New York, 2: Sayfa no (1966).
  • Baker A. and Davenport H., “The equations x2− = y2 and 8x− Math. Oxford Ser., 2(3):129-137 (1969) = − z2”, Quart. J.
  • Kanagasababathy P. and Ponnuduraı, T. “The Simultaneous y233 −3 Math.Oxford Ser, 26(3): 275-278 (1975). x2= −”, Quart. J. − ”, Quart. J.
  • Heichelheim, P, “The study of positive integers (a b such that ab + is a square. Fibonacci ,) such that ab + is a square. Fibonacci Quatr., 17: 269-274 (1979).
  • Thamotherampillai, N., “The set of numbers {1 2 7}”,Bulletin Calcutta Math. Soc. 72:195- (1980).
  • Mohanty S.P. and Ramasamy, A.M.S. “The simultaneous Diophantine equations 5y− x =x and 2y+ = + = z2” J.Number Theory, 18: 356-359 (1984).
  • Mohanty S.P. and Ramasamy A.M.S., The Characteristic number of two simultaneous Pell’s equations and it’s application. Simon Stevin”, A Quarterly J.P. and Applied Math., 59: 203-214 (1985)
  • Brown, E. “Sets in which xy+ k is always a square. Mathematics of Comp.”, 613-620 (1985). Altindis, H., “On P j2
  • Calcutta”, Mathematical Society, 86(4): 305 - 306. (1994).
  • Dujella, A., “On the size of Diophantine m tuples”, Math. Proc. Cambridge Philos Soc., :23-33 (2002).
  • Dujella A.and Luca, F., “Diophantine m tuples for primes”. Intern. Math. Research Notices :2913-2940 (2005).
  • Dujella A. and. Ramasamy, A. M. S, “Fibonacci numbers and sets with the property D (4)”, Bull. Belg. Math. Soc., Simon Stevin, 12:401-412 (2005).

Characterization and Extendability of P Sets For k ≡ k

Yıl 2010, Cilt: 23 Sayı: 3, 295 - 297, 06.07.2010

Öz

Kaynakça

  • Dickson, L. E., “History of the theory of numbers”, Chelsea New York, 2: Sayfa no (1966).
  • Baker A. and Davenport H., “The equations x2− = y2 and 8x− Math. Oxford Ser., 2(3):129-137 (1969) = − z2”, Quart. J.
  • Kanagasababathy P. and Ponnuduraı, T. “The Simultaneous y233 −3 Math.Oxford Ser, 26(3): 275-278 (1975). x2= −”, Quart. J. − ”, Quart. J.
  • Heichelheim, P, “The study of positive integers (a b such that ab + is a square. Fibonacci ,) such that ab + is a square. Fibonacci Quatr., 17: 269-274 (1979).
  • Thamotherampillai, N., “The set of numbers {1 2 7}”,Bulletin Calcutta Math. Soc. 72:195- (1980).
  • Mohanty S.P. and Ramasamy, A.M.S. “The simultaneous Diophantine equations 5y− x =x and 2y+ = + = z2” J.Number Theory, 18: 356-359 (1984).
  • Mohanty S.P. and Ramasamy A.M.S., The Characteristic number of two simultaneous Pell’s equations and it’s application. Simon Stevin”, A Quarterly J.P. and Applied Math., 59: 203-214 (1985)
  • Brown, E. “Sets in which xy+ k is always a square. Mathematics of Comp.”, 613-620 (1985). Altindis, H., “On P j2
  • Calcutta”, Mathematical Society, 86(4): 305 - 306. (1994).
  • Dujella, A., “On the size of Diophantine m tuples”, Math. Proc. Cambridge Philos Soc., :23-33 (2002).
  • Dujella A.and Luca, F., “Diophantine m tuples for primes”. Intern. Math. Research Notices :2913-2940 (2005).
  • Dujella A. and. Ramasamy, A. M. S, “Fibonacci numbers and sets with the property D (4)”, Bull. Belg. Math. Soc., Simon Stevin, 12:401-412 (2005).
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Mathematics
Yazarlar

Hüseyin Altındiş

Yayımlanma Tarihi 6 Temmuz 2010
Yayımlandığı Sayı Yıl 2010 Cilt: 23 Sayı: 3

Kaynak Göster

APA Altındiş, H. (2010). Characterization and Extendability of P k Sets For k=3(4). Gazi University Journal of Science, 23(3), 295-297.
AMA Altındiş H. Characterization and Extendability of P k Sets For k=3(4). Gazi University Journal of Science. Eylül 2010;23(3):295-297.
Chicago Altındiş, Hüseyin. “Characterization and Extendability of P K Sets For k=3(4)”. Gazi University Journal of Science 23, sy. 3 (Eylül 2010): 295-97.
EndNote Altındiş H (01 Eylül 2010) Characterization and Extendability of P k Sets For k=3(4). Gazi University Journal of Science 23 3 295–297.
IEEE H. Altındiş, “Characterization and Extendability of P k Sets For k=3(4)”, Gazi University Journal of Science, c. 23, sy. 3, ss. 295–297, 2010.
ISNAD Altındiş, Hüseyin. “Characterization and Extendability of P K Sets For k=3(4)”. Gazi University Journal of Science 23/3 (Eylül 2010), 295-297.
JAMA Altındiş H. Characterization and Extendability of P k Sets For k=3(4). Gazi University Journal of Science. 2010;23:295–297.
MLA Altındiş, Hüseyin. “Characterization and Extendability of P K Sets For k=3(4)”. Gazi University Journal of Science, c. 23, sy. 3, 2010, ss. 295-7.
Vancouver Altındiş H. Characterization and Extendability of P k Sets For k=3(4). Gazi University Journal of Science. 2010;23(3):295-7.