Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2012, Cilt: 25 Sayı: 4, 863 - 867, 25.02.2012

Öz

Kaynakça

  • [1] N. Agayev, S. Halicioglu and A. Harmanci, ``On Rickart modules’’, appears in Bull. Iran. Math. Soc. available at http://www. iranjournals.ir/ims/bulletin/
  • [2] G. F. Birkenmeier, J. Y. Kim and J. K. Park, ``On extensions of Baer and quasi-Baer Rings’’, J. Pure Appl. Algebra 159(2001), 25-42.
  • [3] I. Kaplansky, ``Rings of Operators’’, Math. Lecture Note Series, Benjamin, New York, (1965).
  • [4] T. K. Lee and Y. Zhou, ``Reduced modules’’, Rings, modules, algebras, and abelian groups, 365-377, Lecture Notes in Pure Appl. Math. 236, Dekker, New York, (2004).
  • [5] S. T. Rizvi and C. S. Roman, ``Baer and QuasiBaer Modules’’, Comm. Algebra 32(2004), 103-123.
  • [6] J. E. Roos, ``Sur les categories auto-injectifs a droit’’, C. R. Acad. Sci. Paris 265(1967), 14- 17.

Extensions of Baer and Principally Projective Modules

Yıl 2012, Cilt: 25 Sayı: 4, 863 - 867, 25.02.2012

Öz

In this note, we investigate extensions of Baer and principally projective modules. Let R be an arbitrary ring with identity and M a right R-module. For an abelian module M, we show that M is Baer (resp. principally projective) if and only if the polynomial extension of M is Baer (resp. principally projective) if and only if the power series extension of M is Baer (resp. principally projective) if and only if the Laurent polynomial extension of M is Baer (resp. principally projective) if and only if the Laurent power series extension of M is Baer (resp. principally projective). 

Kaynakça

  • [1] N. Agayev, S. Halicioglu and A. Harmanci, ``On Rickart modules’’, appears in Bull. Iran. Math. Soc. available at http://www. iranjournals.ir/ims/bulletin/
  • [2] G. F. Birkenmeier, J. Y. Kim and J. K. Park, ``On extensions of Baer and quasi-Baer Rings’’, J. Pure Appl. Algebra 159(2001), 25-42.
  • [3] I. Kaplansky, ``Rings of Operators’’, Math. Lecture Note Series, Benjamin, New York, (1965).
  • [4] T. K. Lee and Y. Zhou, ``Reduced modules’’, Rings, modules, algebras, and abelian groups, 365-377, Lecture Notes in Pure Appl. Math. 236, Dekker, New York, (2004).
  • [5] S. T. Rizvi and C. S. Roman, ``Baer and QuasiBaer Modules’’, Comm. Algebra 32(2004), 103-123.
  • [6] J. E. Roos, ``Sur les categories auto-injectifs a droit’’, C. R. Acad. Sci. Paris 265(1967), 14- 17.
Toplam 6 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Mathematics
Yazarlar

Sait Halicioglu

Burcu Ungor

Abdullah Harmancı

Yayımlanma Tarihi 25 Şubat 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 25 Sayı: 4

Kaynak Göster

APA Halicioglu, S., Ungor, B., & Harmancı, A. (2012). Extensions of Baer and Principally Projective Modules. Gazi University Journal of Science, 25(4), 863-867.
AMA Halicioglu S, Ungor B, Harmancı A. Extensions of Baer and Principally Projective Modules. Gazi University Journal of Science. Ekim 2012;25(4):863-867.
Chicago Halicioglu, Sait, Burcu Ungor, ve Abdullah Harmancı. “Extensions of Baer and Principally Projective Modules”. Gazi University Journal of Science 25, sy. 4 (Ekim 2012): 863-67.
EndNote Halicioglu S, Ungor B, Harmancı A (01 Ekim 2012) Extensions of Baer and Principally Projective Modules. Gazi University Journal of Science 25 4 863–867.
IEEE S. Halicioglu, B. Ungor, ve A. Harmancı, “Extensions of Baer and Principally Projective Modules”, Gazi University Journal of Science, c. 25, sy. 4, ss. 863–867, 2012.
ISNAD Halicioglu, Sait vd. “Extensions of Baer and Principally Projective Modules”. Gazi University Journal of Science 25/4 (Ekim 2012), 863-867.
JAMA Halicioglu S, Ungor B, Harmancı A. Extensions of Baer and Principally Projective Modules. Gazi University Journal of Science. 2012;25:863–867.
MLA Halicioglu, Sait vd. “Extensions of Baer and Principally Projective Modules”. Gazi University Journal of Science, c. 25, sy. 4, 2012, ss. 863-7.
Vancouver Halicioglu S, Ungor B, Harmancı A. Extensions of Baer and Principally Projective Modules. Gazi University Journal of Science. 2012;25(4):863-7.