This manuscript introduces a novel class of time series independence tests based on Phi-divergence and quantile-based symbolization. We derive the asymptotic distribution of the test statistic and propose a bootstrap version. Simulations identified optimal parameter values and compared the test performance to existing methods, demonstrating higher size-corrected power for specific Phi-divergence cases. Furthermore, we investigate Rukhin and power divergence, revealing Pearson’s divergence as optimal. The proposed tests were applied to financial (Tehran Stock Exchange, S\&P 500) and ecological (Lynx population) datasets, effectively detecting dependence on the data and confirming the adequacy of the model through independent residuals, demonstrating the robustness and versatility of the method in diverse domains.
Serial independence test Phi-divergence simulation studies quantile symbolization time series
Birincil Dil | İngilizce |
---|---|
Konular | Hesaplamalı İstatistik, Uygulamalı İstatistik |
Bölüm | İstatistik |
Yazarlar | |
Erken Görünüm Tarihi | 7 Haziran 2025 |
Yayımlanma Tarihi | 24 Haziran 2025 |
Gönderilme Tarihi | 18 Kasım 2024 |
Kabul Tarihi | 26 Mayıs 2025 |
Yayımlandığı Sayı | Yıl 2025 |