Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Erken Görünüm, 1 - 16
https://doi.org/10.15672/hujms.1563103

Öz

Kaynakça

  • [1] R. P. Agarwal and P. J. Y. Wong, Advanced Topics in Difference Equations, Kluwer Academic Publishers Group, Dordrecht, 1997.

On Oscillatory First Order Nonautonomous Functional Difference Systems

Yıl 2025, Erken Görünüm, 1 - 16
https://doi.org/10.15672/hujms.1563103

Öz

\begin{abstract}
In this work, an illustrative discussion has been made on sufficient conditions under which all vector solutions of first order 2-dim nonautonomous neutral delay difference systems of the form
$$\Delta \left[%
\begin{array}{c}
u(\theta)+b(\theta)u(\theta-\kappa)\\
v(\theta)+b(\theta)v(\theta-\kappa) \\
\end{array}%
\right]= \left[%
\begin{array}{cc}
a_{1}(\theta) & a_{2}(\theta) \\
a_{3}(\theta) & a_{4}(\theta) \\
\end{array}%
\right]\left[%
\begin{array}{c}
g_1(u(\theta-\gamma))\\
g_2(v(\theta-\eta)) \\
\end{array}%
\right]+\left[%
\begin{array}{c}
\varphi_1(\theta)\\
\varphi_2(\theta) \\
\end{array}%
\right], \theta\geq\rho$$
are oscillatory, where $\kappa>0,$ $\gamma\geq 0, \eta\geq 0$ are integers, $a_{j}(\theta), j=1,2,3,4, b(\theta), \varphi_{1}(\theta),$ $\varphi_{2}(\theta)$ are sequences of real numbers for $\theta\in\mathbb{N}(\theta_{0})$ and $g_1, g_2\in\mathcal{C}(\mathbb{R}, \mathbb{R})$ are nondecreasing with the properties $\phi g_1(\phi)>0, \psi g_2(\psi)>0$ for $\phi\neq 0, \psi\neq 0.$ We verify our results with the examples.
\end{abstract}

Kaynakça

  • [1] R. P. Agarwal and P. J. Y. Wong, Advanced Topics in Difference Equations, Kluwer Academic Publishers Group, Dordrecht, 1997.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Adi Diferansiyel Denklemler, Fark Denklemleri ve Dinamik Sistemler
Bölüm Matematik
Yazarlar

Sunita Das 0000-0002-1661-3560

Arun Kumar Tripathy 0000-0002-5417-9064

Erken Görünüm Tarihi 27 Ocak 2025
Yayımlanma Tarihi
Gönderilme Tarihi 7 Ekim 2024
Kabul Tarihi 12 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Erken Görünüm

Kaynak Göster

APA Das, S., & Tripathy, A. K. (2025). On Oscillatory First Order Nonautonomous Functional Difference Systems. Hacettepe Journal of Mathematics and Statistics1-16. https://doi.org/10.15672/hujms.1563103
AMA Das S, Tripathy AK. On Oscillatory First Order Nonautonomous Functional Difference Systems. Hacettepe Journal of Mathematics and Statistics. Published online 01 Ocak 2025:1-16. doi:10.15672/hujms.1563103
Chicago Das, Sunita, ve Arun Kumar Tripathy. “On Oscillatory First Order Nonautonomous Functional Difference Systems”. Hacettepe Journal of Mathematics and Statistics, Ocak (Ocak 2025), 1-16. https://doi.org/10.15672/hujms.1563103.
EndNote Das S, Tripathy AK (01 Ocak 2025) On Oscillatory First Order Nonautonomous Functional Difference Systems. Hacettepe Journal of Mathematics and Statistics 1–16.
IEEE S. Das ve A. K. Tripathy, “On Oscillatory First Order Nonautonomous Functional Difference Systems”, Hacettepe Journal of Mathematics and Statistics, ss. 1–16, Ocak 2025, doi: 10.15672/hujms.1563103.
ISNAD Das, Sunita - Tripathy, Arun Kumar. “On Oscillatory First Order Nonautonomous Functional Difference Systems”. Hacettepe Journal of Mathematics and Statistics. Ocak 2025. 1-16. https://doi.org/10.15672/hujms.1563103.
JAMA Das S, Tripathy AK. On Oscillatory First Order Nonautonomous Functional Difference Systems. Hacettepe Journal of Mathematics and Statistics. 2025;:1–16.
MLA Das, Sunita ve Arun Kumar Tripathy. “On Oscillatory First Order Nonautonomous Functional Difference Systems”. Hacettepe Journal of Mathematics and Statistics, 2025, ss. 1-16, doi:10.15672/hujms.1563103.
Vancouver Das S, Tripathy AK. On Oscillatory First Order Nonautonomous Functional Difference Systems. Hacettepe Journal of Mathematics and Statistics. 2025:1-16.