Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Erken Görünüm, 1 - 14
https://doi.org/10.15672/hujms.1605434

Öz

Kaynakça

  • [1] F. Anceschi, A. Barbagallo and S. G. Lo Bianco, Inverse tensor variational inequalities and applications, J. Optim. Theory Appl. 196, 570–589, 2023.

Well-Posedness of A Class Generalized Split Quasi-Inverse Tensor Variational Inequalities

Yıl 2025, Erken Görünüm, 1 - 14
https://doi.org/10.15672/hujms.1605434

Öz

This paper aims to study a generalized split quasi-inverse tensor variational inequality (GSQITVI) in tensor spaces. Building on the concept of well-posedness, we establish several metric-based features that provide necessary and sufficient conditions for the well-posedness of the GSQITVI. By utilizing the measure of non-compactness and the correlation theorem, we also derive results concerning the well-posedness of the problem. These findings emphasize the key properties of the GSQITVI and offer an analysis of the convergence of its solutions.

Kaynakça

  • [1] F. Anceschi, A. Barbagallo and S. G. Lo Bianco, Inverse tensor variational inequalities and applications, J. Optim. Theory Appl. 196, 570–589, 2023.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kısmi Diferansiyel Denklemler, Varyasyon Hesabı, Sistem Teorisinin Matematiksel Yönleri ve Kontrol Teorisi
Bölüm Matematik
Yazarlar

Qing Nie 0009-0003-2410-9588

Vo Minh Tam 0000-0002-3959-5449

Boling Chen 0000-0002-1944-7975

Erken Görünüm Tarihi 11 Nisan 2025
Yayımlanma Tarihi
Gönderilme Tarihi 22 Aralık 2024
Kabul Tarihi 23 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Erken Görünüm

Kaynak Göster

APA Nie, Q., Tam, V. M., & Chen, B. (2025). Well-Posedness of A Class Generalized Split Quasi-Inverse Tensor Variational Inequalities. Hacettepe Journal of Mathematics and Statistics1-14. https://doi.org/10.15672/hujms.1605434
AMA Nie Q, Tam VM, Chen B. Well-Posedness of A Class Generalized Split Quasi-Inverse Tensor Variational Inequalities. Hacettepe Journal of Mathematics and Statistics. Published online 01 Nisan 2025:1-14. doi:10.15672/hujms.1605434
Chicago Nie, Qing, Vo Minh Tam, ve Boling Chen. “Well-Posedness of A Class Generalized Split Quasi-Inverse Tensor Variational Inequalities”. Hacettepe Journal of Mathematics and Statistics, Nisan (Nisan 2025), 1-14. https://doi.org/10.15672/hujms.1605434.
EndNote Nie Q, Tam VM, Chen B (01 Nisan 2025) Well-Posedness of A Class Generalized Split Quasi-Inverse Tensor Variational Inequalities. Hacettepe Journal of Mathematics and Statistics 1–14.
IEEE Q. Nie, V. M. Tam, ve B. Chen, “Well-Posedness of A Class Generalized Split Quasi-Inverse Tensor Variational Inequalities”, Hacettepe Journal of Mathematics and Statistics, ss. 1–14, Nisan 2025, doi: 10.15672/hujms.1605434.
ISNAD Nie, Qing vd. “Well-Posedness of A Class Generalized Split Quasi-Inverse Tensor Variational Inequalities”. Hacettepe Journal of Mathematics and Statistics. Nisan 2025. 1-14. https://doi.org/10.15672/hujms.1605434.
JAMA Nie Q, Tam VM, Chen B. Well-Posedness of A Class Generalized Split Quasi-Inverse Tensor Variational Inequalities. Hacettepe Journal of Mathematics and Statistics. 2025;:1–14.
MLA Nie, Qing vd. “Well-Posedness of A Class Generalized Split Quasi-Inverse Tensor Variational Inequalities”. Hacettepe Journal of Mathematics and Statistics, 2025, ss. 1-14, doi:10.15672/hujms.1605434.
Vancouver Nie Q, Tam VM, Chen B. Well-Posedness of A Class Generalized Split Quasi-Inverse Tensor Variational Inequalities. Hacettepe Journal of Mathematics and Statistics. 2025:1-14.