Existence and extinction of solutions for parabolic equations with nonstandard growth nonlinearity
Yıl 2024,
Cilt: 53 Sayı: 2, 367 - 381, 23.04.2024
Rabil Ayazoğlu
,
Gülizar Alisoy
,
Sezgin Akbulut
,
Tuba Ağırman Aydın
Öz
In this paper, we consider an initial boundary value problem for a class of $p(\cdot )$-Laplacian parabolic equation with nonstandard nonlinearity in a bounded domain. By using new approach, we obtain the global and decay of existence of the solutions. Moreover, the precise decay estimates of solutions before the occurrence of the extinction are derived.
Kaynakça
- [1] E. Acerbi, G. Mingione, Regularity results for stationary electro-rheological fluids,
Archive for Rational Mechanics and Analysis 164, 213-259, 2002.
- [2] M.K. Alaoui, S.A. Messaoudi and H.B. Khenous, A blow-up result for nonlinear generalized
heat equation, Computers & Mathematics with Applications 68 (12), 1723-1732,
2014.
- [3] S. Antontsev, S. Shmarev, Anisotropic parabolic equations with variable nonlinearity,
Publicacions Matemàtiques 53, 355-399, 2009.
- [4] S. Antontsev, S. Shmarev, Vanishing solutions of anisotropic parabolic equations with
variable nonlinearity, Journal of Mathematical Analysis and Applications 361 (2),
371-391, 2010.
- [5] S. Antontsev and V. Zhikov, Higher integrability for parabolic equations of $p(x,t)$-
Laplacian type, Advances in Differential Equations 10 (9), 1053-1080, 2005.
- [6] S. Antontsev, M. Chipot and S. Shmarev, Uniqueness and comparison theorems for
solutions of doubly nonlinear parabolic equations with nonstandard growth conditions,
Communications on Pure and Applied Analysis 12 (4), 1527-1546, 2013.
- [7] R. Ayazoglu (Mashiyev), E. Akkoyunlu, Extinction properties of solutions for a parabolic
equation with a parametric variable exponent nonlinearity, Transactions Issue
Mathematics, Azerbaijan National Academy of Sciences 42 (1), 1-16, 2022.
- [8] Y. Bai, N.S. Papageorgiou, S. Zeng, A singular eigenvalue problem for the Dirichlet
$(p,q)$-Laplacian, Mathematische Zeitschrift, 300 (1), 325-345, 2022.
- [9] M.M. Bokalo, O.M. Buhrii and R.A. Mashiyev, Unique solvablity of initial-boundaryvalue
problems for anisotropic elliptic-parabolic equations with variable exponents of
nanlinearity, Journal of Nonlinear Evolution Equations and Applications, 2013 (6),
67-87, 2014.
- [10] O.M. Buhrii and R.A. Mashiyev, Uniqueness of solutions of the parabolic variational
inequality with variable exponent of nonlinearity, Nonlinear Analysis: Theory, Methods
& Applications 70 (6), 2325-2331, 2009.
- [11] J. Cen, A.A. Khan, D. Motreanu, S. Zeng, Inverse problems for generalized quasivariational
inequalities with application to elliptic mixed boundary value systems, Inverse
Problems 38 (6), 1-28, 2022.
- [12] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image
restoration, SIAM Journal on Applied Mathematics 66 (4), 1383-1406, 2006.
- [13] L. Diening, P. Harjulehto, P. Hästö, M. Ružicka, Lebesgue and Sobolev spaces with
variable exponents, Lecture Notes in Mathematics Vol. 2017, Springer-Verlag, Heidelberg,
2011.
- [14] X. Fan, J. Shen, D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, Journal
of Mathematical Analysis and Applications 262 (2), 749-760, 2001.
- [15] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha }$,
J. Fac. Sci. Univ. Tokyo I. 13, 109-124, 1966.
- [16] Y.C. Gao, Y. Gao and W.J. Gao, Existence, uniqueness, and nonexistence of solution
to nonlinear diffusion equations with $p(x,t)$-Laplacian operator, Boundary Value
Problems 2016, 1-10, 2016.
- [17] J. Giacomoni, V. Radulescu and G. Warnault, Quasilinear parabolic problem with
variable exponent: Qualitative analysis and stabilization, Communications in Contemporary
Mathematics 20 (08), 1-38, 2018.
- [18] B. Guo, Y.J. Li and W.J. Gao, Singular phenomena of solutions for nonlinear diffusion
equations involving $p(x)$-Laplace operator and nonlinear source, Zeitschrift für
angewandte Mathematik und Physik 66, 989-1005, 2015.
- [19] Y. Han, Long-time behavior of solutions to a class of parabolic equations with nonstandard
growth condition, Bulletin of the Malaysian Mathematical Sciences Society
39, 1183-1200, 2016.
- [20] S. Kaplan, On the growth of the solutions of quasilinear parabolic equations, Communications
on Pure and Applied Mathematics 16 (3), 305-330, 1963.
- [21] O. Kholyavka, O. Buhrii, M. Bokalo and R. Ayazoglu (Mashiyev), Initial-boundaryvalue
problem for third order equations of Kirchhoff type with variable exponents of
nonlinearity, Advances in Math. Sciences and Appl. 23 (2), 509-528, 2013.
- [22] V. Komornik, Exact Controllability and Stabilization, in: RAM: Research in Applied
Mathematics, John Wiley, Ltd., Chichester, Masson, Paris, 1994.
- [23] O. Kovacik and J. Rakosnik, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Mathematical
Journal 41 (4), 592-618, 1991.
- [24] H.A. Levine, Some nonexistence and instability theorems for solutions of formally
parabolic equations of the form $Pu_{t}=-Au+F(u)$, Archive for Rational Mechanics
and Analysis 51 (5), 371-386, 1973.
- [25] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires,
(in French), Dunod, Gauthier Villars, Paris, 1969.
- [26] B. Liu and M. Dong, A nonlinear diffusion problem with convection and anisotropic
nonstandard growth conditions, Nonlinear Analysis: Real World Applications 48,
383-409, 2019.
- [27] Y. Liu, Exictence and blow-up of solutions to a parabolic equation with nonstadard
growth conditions, Bulletin of the Australian Mathematical Society 99 (2), 242-249,
2019.
- [28] Y. Liu, S. Mig´orski, V.T. Nguyen, S. Zeng, Existence and convergence results for an
elastic frictional contact problem with nonmonotone subd ifferential boundary conditions,
Acta Mathematica Scientia 41 (4), 1151-1168, 2021.
- [29] A.T. Lourêdo, M.M. Miranda and M.R. Clark, Variable exponent perturbation of a
parabolic equation with $p(x)$-Laplacian, Electronic Journal of Qualitative Theory of
Differential Equations 2019 (60), 1-14, 2019.
- [30] R.A. Mashiyev and O.M. Buhrii, Existence of solutions of the parabolic variational
inequality with variable exponent of nonlinearity, Journal of Mathematical Analysis
and Applications 377 (2), 450-463, 2011.
- [31] L.C. Nhan, Q.V. Chuong, L.X. Truong, Potential well method for $p(x)$-Laplacian
equations with variable exponent sources, Nonlinear Analysis: Real World Applications
56, 103155, 1-21, 2020.
- [32] L.E. Payne, D.H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations,
Israel Journal of Mathematics 22 (3-4), 273-303, 1975.
- [33] J.P. Pinasco, Blow-up for parabolic and hyperbolic problems with variable exponents,
Nonlinear Analysis: Theory, Methods & Applications 71 (3-4) (2009), 1094-1099.
- [34] M.A. Ragusa, The Cauchy-Dirichlet Problem for Parabolic Equations with VMO Coefficients,
Mathematical and Computer Modelling 42 (11-12), 1245-1254, 2005.
- [35] M. Ružicka, Electrorheological Fluids: Modeling and Mathematical Theory, in: Lecture
Notes in Mathematics, vol. 1748, Springer, Berlin, 2000.
- [36] J. Simon, Compact sets in the space $L^{p}(0,T;B)$, Ann. Mat. Pura Appl. 146 (4),
65-96, 1987.
- [37] X. Wu, The blow-up of solutions for m-Laplacian equations with variable sources
under positive initial energy, Computers & Mathematics with Applications 72 (9),
2516-2524, 2016.
- [38] S. Zeng, Y. Bai, L. Gasi´nski, P. Winkert, Existence results for double phase implicit
obstacle problems involving multivalued operators, Calculus of Variations and Partial
Differential Equations 59, 1-18, .2020.
- [39] S. Zeng, V.D. Radulescu, P. Winkert, Double phase implicit obstacle prob lems with
convection and multivalued mixed boundary value conditions, SIAM Journal on Mathematical
Analysis 54 (2), 1898-1926, 2022.
Yıl 2024,
Cilt: 53 Sayı: 2, 367 - 381, 23.04.2024
Rabil Ayazoğlu
,
Gülizar Alisoy
,
Sezgin Akbulut
,
Tuba Ağırman Aydın
Kaynakça
- [1] E. Acerbi, G. Mingione, Regularity results for stationary electro-rheological fluids,
Archive for Rational Mechanics and Analysis 164, 213-259, 2002.
- [2] M.K. Alaoui, S.A. Messaoudi and H.B. Khenous, A blow-up result for nonlinear generalized
heat equation, Computers & Mathematics with Applications 68 (12), 1723-1732,
2014.
- [3] S. Antontsev, S. Shmarev, Anisotropic parabolic equations with variable nonlinearity,
Publicacions Matemàtiques 53, 355-399, 2009.
- [4] S. Antontsev, S. Shmarev, Vanishing solutions of anisotropic parabolic equations with
variable nonlinearity, Journal of Mathematical Analysis and Applications 361 (2),
371-391, 2010.
- [5] S. Antontsev and V. Zhikov, Higher integrability for parabolic equations of $p(x,t)$-
Laplacian type, Advances in Differential Equations 10 (9), 1053-1080, 2005.
- [6] S. Antontsev, M. Chipot and S. Shmarev, Uniqueness and comparison theorems for
solutions of doubly nonlinear parabolic equations with nonstandard growth conditions,
Communications on Pure and Applied Analysis 12 (4), 1527-1546, 2013.
- [7] R. Ayazoglu (Mashiyev), E. Akkoyunlu, Extinction properties of solutions for a parabolic
equation with a parametric variable exponent nonlinearity, Transactions Issue
Mathematics, Azerbaijan National Academy of Sciences 42 (1), 1-16, 2022.
- [8] Y. Bai, N.S. Papageorgiou, S. Zeng, A singular eigenvalue problem for the Dirichlet
$(p,q)$-Laplacian, Mathematische Zeitschrift, 300 (1), 325-345, 2022.
- [9] M.M. Bokalo, O.M. Buhrii and R.A. Mashiyev, Unique solvablity of initial-boundaryvalue
problems for anisotropic elliptic-parabolic equations with variable exponents of
nanlinearity, Journal of Nonlinear Evolution Equations and Applications, 2013 (6),
67-87, 2014.
- [10] O.M. Buhrii and R.A. Mashiyev, Uniqueness of solutions of the parabolic variational
inequality with variable exponent of nonlinearity, Nonlinear Analysis: Theory, Methods
& Applications 70 (6), 2325-2331, 2009.
- [11] J. Cen, A.A. Khan, D. Motreanu, S. Zeng, Inverse problems for generalized quasivariational
inequalities with application to elliptic mixed boundary value systems, Inverse
Problems 38 (6), 1-28, 2022.
- [12] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image
restoration, SIAM Journal on Applied Mathematics 66 (4), 1383-1406, 2006.
- [13] L. Diening, P. Harjulehto, P. Hästö, M. Ružicka, Lebesgue and Sobolev spaces with
variable exponents, Lecture Notes in Mathematics Vol. 2017, Springer-Verlag, Heidelberg,
2011.
- [14] X. Fan, J. Shen, D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, Journal
of Mathematical Analysis and Applications 262 (2), 749-760, 2001.
- [15] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha }$,
J. Fac. Sci. Univ. Tokyo I. 13, 109-124, 1966.
- [16] Y.C. Gao, Y. Gao and W.J. Gao, Existence, uniqueness, and nonexistence of solution
to nonlinear diffusion equations with $p(x,t)$-Laplacian operator, Boundary Value
Problems 2016, 1-10, 2016.
- [17] J. Giacomoni, V. Radulescu and G. Warnault, Quasilinear parabolic problem with
variable exponent: Qualitative analysis and stabilization, Communications in Contemporary
Mathematics 20 (08), 1-38, 2018.
- [18] B. Guo, Y.J. Li and W.J. Gao, Singular phenomena of solutions for nonlinear diffusion
equations involving $p(x)$-Laplace operator and nonlinear source, Zeitschrift für
angewandte Mathematik und Physik 66, 989-1005, 2015.
- [19] Y. Han, Long-time behavior of solutions to a class of parabolic equations with nonstandard
growth condition, Bulletin of the Malaysian Mathematical Sciences Society
39, 1183-1200, 2016.
- [20] S. Kaplan, On the growth of the solutions of quasilinear parabolic equations, Communications
on Pure and Applied Mathematics 16 (3), 305-330, 1963.
- [21] O. Kholyavka, O. Buhrii, M. Bokalo and R. Ayazoglu (Mashiyev), Initial-boundaryvalue
problem for third order equations of Kirchhoff type with variable exponents of
nonlinearity, Advances in Math. Sciences and Appl. 23 (2), 509-528, 2013.
- [22] V. Komornik, Exact Controllability and Stabilization, in: RAM: Research in Applied
Mathematics, John Wiley, Ltd., Chichester, Masson, Paris, 1994.
- [23] O. Kovacik and J. Rakosnik, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Mathematical
Journal 41 (4), 592-618, 1991.
- [24] H.A. Levine, Some nonexistence and instability theorems for solutions of formally
parabolic equations of the form $Pu_{t}=-Au+F(u)$, Archive for Rational Mechanics
and Analysis 51 (5), 371-386, 1973.
- [25] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires,
(in French), Dunod, Gauthier Villars, Paris, 1969.
- [26] B. Liu and M. Dong, A nonlinear diffusion problem with convection and anisotropic
nonstandard growth conditions, Nonlinear Analysis: Real World Applications 48,
383-409, 2019.
- [27] Y. Liu, Exictence and blow-up of solutions to a parabolic equation with nonstadard
growth conditions, Bulletin of the Australian Mathematical Society 99 (2), 242-249,
2019.
- [28] Y. Liu, S. Mig´orski, V.T. Nguyen, S. Zeng, Existence and convergence results for an
elastic frictional contact problem with nonmonotone subd ifferential boundary conditions,
Acta Mathematica Scientia 41 (4), 1151-1168, 2021.
- [29] A.T. Lourêdo, M.M. Miranda and M.R. Clark, Variable exponent perturbation of a
parabolic equation with $p(x)$-Laplacian, Electronic Journal of Qualitative Theory of
Differential Equations 2019 (60), 1-14, 2019.
- [30] R.A. Mashiyev and O.M. Buhrii, Existence of solutions of the parabolic variational
inequality with variable exponent of nonlinearity, Journal of Mathematical Analysis
and Applications 377 (2), 450-463, 2011.
- [31] L.C. Nhan, Q.V. Chuong, L.X. Truong, Potential well method for $p(x)$-Laplacian
equations with variable exponent sources, Nonlinear Analysis: Real World Applications
56, 103155, 1-21, 2020.
- [32] L.E. Payne, D.H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations,
Israel Journal of Mathematics 22 (3-4), 273-303, 1975.
- [33] J.P. Pinasco, Blow-up for parabolic and hyperbolic problems with variable exponents,
Nonlinear Analysis: Theory, Methods & Applications 71 (3-4) (2009), 1094-1099.
- [34] M.A. Ragusa, The Cauchy-Dirichlet Problem for Parabolic Equations with VMO Coefficients,
Mathematical and Computer Modelling 42 (11-12), 1245-1254, 2005.
- [35] M. Ružicka, Electrorheological Fluids: Modeling and Mathematical Theory, in: Lecture
Notes in Mathematics, vol. 1748, Springer, Berlin, 2000.
- [36] J. Simon, Compact sets in the space $L^{p}(0,T;B)$, Ann. Mat. Pura Appl. 146 (4),
65-96, 1987.
- [37] X. Wu, The blow-up of solutions for m-Laplacian equations with variable sources
under positive initial energy, Computers & Mathematics with Applications 72 (9),
2516-2524, 2016.
- [38] S. Zeng, Y. Bai, L. Gasi´nski, P. Winkert, Existence results for double phase implicit
obstacle problems involving multivalued operators, Calculus of Variations and Partial
Differential Equations 59, 1-18, .2020.
- [39] S. Zeng, V.D. Radulescu, P. Winkert, Double phase implicit obstacle prob lems with
convection and multivalued mixed boundary value conditions, SIAM Journal on Mathematical
Analysis 54 (2), 1898-1926, 2022.