Araştırma Makalesi
BibTex RIS Kaynak Göster

The convexity induced by quasi-consistency and quasi-adjacency

Yıl 2025, Cilt: 54 Sayı: 1, 1 - 15, 28.02.2025
https://doi.org/10.15672/hujms.1320859

Öz

In this paper, we introduce (quasi-)consistent spaces and (quasi-)adjacent spaces to characterize convexity spaces. Firstly, we show that convexity spaces can be characterized by quasi-consistent spaces. They can be induced by each other. In particular, each convexity space can be quasi-consistentizable. Every quasi-consistency $\mathcal{U}$ can induce two hull operators and thus determine different convexities $\mathcal{C}^{\mathcal{U}}$ and $\mathcal{C}_{\mathcal{U}}$. And $\mathcal{C}^{\mathcal{U}}=\mathcal{C}_{\mathcal{U}}$ holds when $\mathcal{U}$ is a consistency. Secondly, we use quasi-adjacent spaces to characterize convexity spaces. Each convexity space can be quasi-adjacentizable. In both of characterizations of convexity, remotehood systems play an important role in inducing convexity. Finally, we show there exists a close relation between a quasi-consistency and a quasi-adjacency. Furthermore, there exists a one-to-one correspondence between a quasi-adjacency and a fully ordered quasi-consistency. And we deeply study the relationships among these structures.

Destekleyen Kurum

National Natural Science Foundation of China

Proje Numarası

No. 11871097, No. 12271036

Kaynakça

  • [1] N. Bourbaki, Topologie générale ch. I et II, Paris, 1940.
  • [2] Y. Dong and F.-G. Shi, On weak convex MV-algebras, Comm. Algebra 51 (7), 2759–2778, 2023.
  • [3] V.A. Efremovic, Infinitesimal spaces, Dokl. Akad. Nauk SSSR 76, 341–343, 1951 .
  • [4] R. Engelking, General topology, Heldermann, Berlin, 1989.
  • [5] P. Fletcher and W.F. Lindgren, Quasi-Uniform Spaces, Lecture Notes in Pure Appl. Math., vol. 77, Dekker, New York, 1982.
  • [6] S.P. Franklin, Some results on order-convexity, Amer. Math Monthly 62, 1962.
  • [7] S.A. Naimpally and B.D. Warrack, Proximity spaces, Cambridge Univ., Cambridge, 1970.
  • [8] T. Rapcsak, Geodesic convexity nonlinear optimization, J. Option. Theory App. 69, 169–183, 1991.
  • [9] Ju.M. Smirnov, On proximity spaces, Mat. Sb. (N.S.) 31 (73), 543–574, 1952.
  • [10] M.L.J. Van de Vel, Theory of convex structures, North Holland, N.Y. 1993.
  • [11] M.L.J. Van de Vel, Binary convexities and distributive lattices, Proc. London Math. Soc. 48, 1–33, 1984.
  • [12] X. Wei and F.-G. Shi, Convexity-preserving properties of partial binary operations with respect to filter convex structures on effect algebras, Internat. J. Theoret. Phys. 61 (7), 2022.
  • [13] X. Wei and F.-G. Shi, Interval convexity of scale effect algebras, Comm. Algebra 51 (7), 2877–2894, 2023.
  • [14] A. Weil, Sur les groupes topologiques et les groupes mesurés, C. R. Acad. Paris, 202, 1936.
  • [15] Y. Yue, W. Yao and W.K. Ho, Applications of Scott-closed sets in convex structures, Topol. Appl. 314, 108093, 2022.
Yıl 2025, Cilt: 54 Sayı: 1, 1 - 15, 28.02.2025
https://doi.org/10.15672/hujms.1320859

Öz

Proje Numarası

No. 11871097, No. 12271036

Kaynakça

  • [1] N. Bourbaki, Topologie générale ch. I et II, Paris, 1940.
  • [2] Y. Dong and F.-G. Shi, On weak convex MV-algebras, Comm. Algebra 51 (7), 2759–2778, 2023.
  • [3] V.A. Efremovic, Infinitesimal spaces, Dokl. Akad. Nauk SSSR 76, 341–343, 1951 .
  • [4] R. Engelking, General topology, Heldermann, Berlin, 1989.
  • [5] P. Fletcher and W.F. Lindgren, Quasi-Uniform Spaces, Lecture Notes in Pure Appl. Math., vol. 77, Dekker, New York, 1982.
  • [6] S.P. Franklin, Some results on order-convexity, Amer. Math Monthly 62, 1962.
  • [7] S.A. Naimpally and B.D. Warrack, Proximity spaces, Cambridge Univ., Cambridge, 1970.
  • [8] T. Rapcsak, Geodesic convexity nonlinear optimization, J. Option. Theory App. 69, 169–183, 1991.
  • [9] Ju.M. Smirnov, On proximity spaces, Mat. Sb. (N.S.) 31 (73), 543–574, 1952.
  • [10] M.L.J. Van de Vel, Theory of convex structures, North Holland, N.Y. 1993.
  • [11] M.L.J. Van de Vel, Binary convexities and distributive lattices, Proc. London Math. Soc. 48, 1–33, 1984.
  • [12] X. Wei and F.-G. Shi, Convexity-preserving properties of partial binary operations with respect to filter convex structures on effect algebras, Internat. J. Theoret. Phys. 61 (7), 2022.
  • [13] X. Wei and F.-G. Shi, Interval convexity of scale effect algebras, Comm. Algebra 51 (7), 2877–2894, 2023.
  • [14] A. Weil, Sur les groupes topologiques et les groupes mesurés, C. R. Acad. Paris, 202, 1936.
  • [15] Y. Yue, W. Yao and W.K. Ho, Applications of Scott-closed sets in convex structures, Topol. Appl. 314, 108093, 2022.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Topoloji, Temel Matematik (Diğer)
Bölüm Matematik
Yazarlar

Yongchao Wang

Fu-gui Shı 0000-0001-8090-3872

Proje Numarası No. 11871097, No. 12271036
Erken Görünüm Tarihi 14 Nisan 2024
Yayımlanma Tarihi 28 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 54 Sayı: 1

Kaynak Göster

APA Wang, Y., & Shı, F.-g. (2025). The convexity induced by quasi-consistency and quasi-adjacency. Hacettepe Journal of Mathematics and Statistics, 54(1), 1-15. https://doi.org/10.15672/hujms.1320859
AMA Wang Y, Shı Fg. The convexity induced by quasi-consistency and quasi-adjacency. Hacettepe Journal of Mathematics and Statistics. Şubat 2025;54(1):1-15. doi:10.15672/hujms.1320859
Chicago Wang, Yongchao, ve Fu-gui Shı. “The Convexity Induced by Quasi-Consistency and Quasi-Adjacency”. Hacettepe Journal of Mathematics and Statistics 54, sy. 1 (Şubat 2025): 1-15. https://doi.org/10.15672/hujms.1320859.
EndNote Wang Y, Shı F-g (01 Şubat 2025) The convexity induced by quasi-consistency and quasi-adjacency. Hacettepe Journal of Mathematics and Statistics 54 1 1–15.
IEEE Y. Wang ve F.-g. Shı, “The convexity induced by quasi-consistency and quasi-adjacency”, Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 1, ss. 1–15, 2025, doi: 10.15672/hujms.1320859.
ISNAD Wang, Yongchao - Shı, Fu-gui. “The Convexity Induced by Quasi-Consistency and Quasi-Adjacency”. Hacettepe Journal of Mathematics and Statistics 54/1 (Şubat 2025), 1-15. https://doi.org/10.15672/hujms.1320859.
JAMA Wang Y, Shı F-g. The convexity induced by quasi-consistency and quasi-adjacency. Hacettepe Journal of Mathematics and Statistics. 2025;54:1–15.
MLA Wang, Yongchao ve Fu-gui Shı. “The Convexity Induced by Quasi-Consistency and Quasi-Adjacency”. Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 1, 2025, ss. 1-15, doi:10.15672/hujms.1320859.
Vancouver Wang Y, Shı F-g. The convexity induced by quasi-consistency and quasi-adjacency. Hacettepe Journal of Mathematics and Statistics. 2025;54(1):1-15.