Araştırma Makalesi
BibTex RIS Kaynak Göster

Another perspective on Kannan contraction

Yıl 2025, Cilt: 54 Sayı: 3, 972 - 983, 24.06.2025
https://doi.org/10.15672/hujms.1528252

Öz

Inspired by the well-known result stating that if any iterate of a mapping is a Banach contraction on a complete metric space, then the mapping itself possesses a unique fixed point, we investigate that claim for a Kannan contraction but by retaining the left-hand side of the inequality as per the mapping itself. With an additional assumption of $k$-continuity, the existence and uniqueness of a fixed point is obtained for a new class of contractions, $m$-Kannan contraction, on a complete metric space. Several examples are given in order to substantiate many theoretical claims such as discontinuity at the unique limit point of the iterative sequence or the ones testifying that this class is wider than the class of Kannan mappings.

Destekleyen Kurum

Ministry of Science, Technological Development and Innovation, Republic of Serbia

Proje Numarası

451-03-65/2024-03/200124

Kaynakça

  • [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3, 133-181, 1922.
  • [2] R. Batra, R. Gupta and P. Sahni, A new extension of Kannan contractions and related fixed point results, J. Anal. 28, 1143-1154, 2020.
  • [3] V. Berinde and M. Pacurar, Kannan’s fixed point appoxim.tion for solving split feasibility and variational inequality problems, J. Comput. Appl. Math. 386, Article ID: 113217, 2021.
  • [4] V. Berinde, A. Petrusel and I. A. Rus, Remarks on the terminology of the mappings in fixed point iterative methods in metric spaces, Fixed Point Theory, 24 (2), 525-540, 2023.
  • [5] E. H. Connell, Properties of fixed point spaces, Proc. Amer. Math. Soc. 10, 974-979, 1959.
  • [6] J. Gornicki, Fixed point theorems for Kannan type mappings, J. Fixed Point Theory Appl. 19, 2145-2152, 2017.
  • [7] R. Kannan, Some remarks on fixed points, Bull. Calcutta Math. Soc. 60, 71-76, 1968.
  • [8] A. N. Kolmogorov and S. V. Fomin, Elements of the theory of functions and functional analysis, Volume I, Metric and Normed Spaces, Graylock Press, Rochester, New York, 1957.
  • [9] H. Lakzian, V. Rakočević and H. Aydi, Extensions of Kannan contraction via wdistances, Aequat. Math. 93, 1231-1244, 2019.
  • [10] P. V. Subrahmanyam, Completeness and fixed-points, Monatsh. Math. 80, 325-330, 1975.
  • [11] S. Som, A. Petruel, H. Garai and L. K. Dey, Some characterizations of Reich and Chatterjea type nonexpansive mappings, J. Fixed Point Theory Appl. 21 (4), 2019.
Yıl 2025, Cilt: 54 Sayı: 3, 972 - 983, 24.06.2025
https://doi.org/10.15672/hujms.1528252

Öz

Proje Numarası

451-03-65/2024-03/200124

Kaynakça

  • [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3, 133-181, 1922.
  • [2] R. Batra, R. Gupta and P. Sahni, A new extension of Kannan contractions and related fixed point results, J. Anal. 28, 1143-1154, 2020.
  • [3] V. Berinde and M. Pacurar, Kannan’s fixed point appoxim.tion for solving split feasibility and variational inequality problems, J. Comput. Appl. Math. 386, Article ID: 113217, 2021.
  • [4] V. Berinde, A. Petrusel and I. A. Rus, Remarks on the terminology of the mappings in fixed point iterative methods in metric spaces, Fixed Point Theory, 24 (2), 525-540, 2023.
  • [5] E. H. Connell, Properties of fixed point spaces, Proc. Amer. Math. Soc. 10, 974-979, 1959.
  • [6] J. Gornicki, Fixed point theorems for Kannan type mappings, J. Fixed Point Theory Appl. 19, 2145-2152, 2017.
  • [7] R. Kannan, Some remarks on fixed points, Bull. Calcutta Math. Soc. 60, 71-76, 1968.
  • [8] A. N. Kolmogorov and S. V. Fomin, Elements of the theory of functions and functional analysis, Volume I, Metric and Normed Spaces, Graylock Press, Rochester, New York, 1957.
  • [9] H. Lakzian, V. Rakočević and H. Aydi, Extensions of Kannan contraction via wdistances, Aequat. Math. 93, 1231-1244, 2019.
  • [10] P. V. Subrahmanyam, Completeness and fixed-points, Monatsh. Math. 80, 325-330, 1975.
  • [11] S. Som, A. Petruel, H. Garai and L. K. Dey, Some characterizations of Reich and Chatterjea type nonexpansive mappings, J. Fixed Point Theory Appl. 21 (4), 2019.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Operatör Cebirleri ve Fonksiyonel Analiz
Bölüm Matematik
Yazarlar

Marija Cvetković 0000-0003-0691-3428

Proje Numarası 451-03-65/2024-03/200124
Erken Görünüm Tarihi 27 Ocak 2025
Yayımlanma Tarihi 24 Haziran 2025
Gönderilme Tarihi 5 Ağustos 2024
Kabul Tarihi 3 Ekim 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 54 Sayı: 3

Kaynak Göster

APA Cvetković, M. (2025). Another perspective on Kannan contraction. Hacettepe Journal of Mathematics and Statistics, 54(3), 972-983. https://doi.org/10.15672/hujms.1528252
AMA Cvetković M. Another perspective on Kannan contraction. Hacettepe Journal of Mathematics and Statistics. Haziran 2025;54(3):972-983. doi:10.15672/hujms.1528252
Chicago Cvetković, Marija. “Another Perspective on Kannan Contraction”. Hacettepe Journal of Mathematics and Statistics 54, sy. 3 (Haziran 2025): 972-83. https://doi.org/10.15672/hujms.1528252.
EndNote Cvetković M (01 Haziran 2025) Another perspective on Kannan contraction. Hacettepe Journal of Mathematics and Statistics 54 3 972–983.
IEEE M. Cvetković, “Another perspective on Kannan contraction”, Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 3, ss. 972–983, 2025, doi: 10.15672/hujms.1528252.
ISNAD Cvetković, Marija. “Another Perspective on Kannan Contraction”. Hacettepe Journal of Mathematics and Statistics 54/3 (Haziran 2025), 972-983. https://doi.org/10.15672/hujms.1528252.
JAMA Cvetković M. Another perspective on Kannan contraction. Hacettepe Journal of Mathematics and Statistics. 2025;54:972–983.
MLA Cvetković, Marija. “Another Perspective on Kannan Contraction”. Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 3, 2025, ss. 972-83, doi:10.15672/hujms.1528252.
Vancouver Cvetković M. Another perspective on Kannan contraction. Hacettepe Journal of Mathematics and Statistics. 2025;54(3):972-83.